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Abstract. This study considers the problem of the extreme behavior exhib-
ited by solutions to Burgers equation subject to stochastic forcing. More specif-

ically, we are interested in the maximum growth achieved by the “enstrophy”

(the Sobolev H1 seminorm of the solution) as a function of the initial enstrophy
E0, in particular, whether in the stochastic setting this growth is different than

in the deterministic case considered by Ayala & Protas (2011). This problem

is motivated by questions about the effect of noise on the possible singularity
formation in hydrodynamic models. The main quantities of interest in the sto-

chastic problem are the expected value of the enstrophy and the enstrophy of
the expected value of the solution. The stochastic Burgers equation is solved

numerically with a Monte Carlo sampling approach. By studying solutions

obtained for a range of optimal initial data and different noise magnitudes, we
reveal different solution behaviors and it is demonstrated that the two quanti-

ties always bracket the enstrophy of the deterministic solution. The key finding

is that the expected values of the enstrophy exhibit the same power-law depen-
dence on the initial enstrophy E0 as reported in the deterministic case. This

indicates that the stochastic excitation does not increase the extreme enstrophy

growth beyond what is already observed in the deterministic case.

1. Introduction and problem statement. Many open problems related to non-
linear partial differential equations (PDEs) of mathematical physics concern the ex-
treme behavior which can be exhibited by their solutions. By this we mean, among
other, questions concerning the maximum possible growth of certain norms of the
solution of the PDE. From the physics point of view, these norms measure differ-
ent properties of the solution, such as generation of small scales in the case of the
Sobolev norms. The question of the maximum possible growth of solution norms is
also intrinsically linked to the problem of existence of solutions to PDE problems
in a given functional space. More specifically, the loss of regularity of a solution re-
sulting from the formation of singularities usually manifests itself in an unbounded
growth of some solution norms in finite time, typically referred to as “blow-up”.
While problems of this type remain open for many important PDEs of mathemati-
cal physics, most attention has been arguably given to establishing the regularity of
the three-dimensional (3D) Navier-Stokes equations [19], a problem which has been
recognized by the Clay Mathematics Institute as one of its “millennium problems”
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[21]. Analogous questions also remain open for the 3D inviscid Euler equation [24].
The problem we address in the present study is how the transient growth of solu-
tions to certain nonlinear PDEs is affected by the presence of noise represented by
a suitably defined stochastic forcing term in the equation. More specifically, the
key question is whether via some interaction with the nonlinearity and dissipation
present in the system such stochastic forcing may enhance or weaken the growth of
certain solution norms as compared to the deterministic case. In particular, in the
case of systems exhibiting finite-time blow-up in the deterministic case it is inter-
esting to know whether noise may accelerate or delay the formation of a singularity,
or perhaps even prevent it entirely [22]. These questions are of course nuanced by
the fact that they may be considered either for individual trajectories or in suitable
statistical terms. We add that transient growth in linear stochastic systems is well
understood [31] and here we focus on the interaction of the stochastic forcing with
a particular type of nonlinearity.

Since this study is ultimately motivated by questions concerning extreme be-
havior in hydrodynamic models, we will focus our attention on the simplest model
used in this context, namely, the one-dimensional (1D) stochastic Burgers equation
defined on a periodic interval [0, 1]

∂tu+
1

2
∂xu

2 − ν∂2
xu = ζ in (0, T ]× (0, 1), (1a)

u(t, 0) = u(t, 1) and ∂xu(t, 0) = ∂xu(t, 1) for t ∈ [0, T ], (1b)

u(0, x) = g(x) for x ∈ (0, 1), (1c)

in which T > 0 represents the length of the time window of interest, ν > 0 is the
viscosity coefficient (hereafter we will use ν = 0.001) and g ∈ H1

p (0, 1) is the initial

condition, where H1
p (0, 1) denotes the Sobolev space of periodic functions defined

on (0, 1) with square integrable derivatives and the norm given by [1]

‖u(t, ·)‖2H1
p

=

∫ 1

0

|u(t, x)|2 + |∂xu(t, x)|2 dx. (2)

For simplicity, we will denote the time-space domain D := (0, T ] × (0, 1) (“:=”
means “equal to by definition”). In equation (1a) the stochastic forcing is given by a
random field ζ(t, x), (t, x) ∈ D. Therefore, at any point (t, x) our solution becomes a
random variable u = u(t, x;ω) for ω in some probability space Ω. We add that, while
for other systems, such as e.g., the Schrödinger equation [18], one may also consider
multiplicative noise, for dissipative models of the type (1a) one typically studies
additive noise. The reason is that, as argued in [22, Section 5.5.2], multiplicative
noise tends to have effect similar to dissipative terms, so if the equation already
involves such a term, then no major qualitative changes in the solution behavior
can be expected.

A common approach to modelling stochastic excitation in PDE systems is to
describe it in terms of Gaussian noise white both in time and space, and associated
with an infinite-variance Wiener process. However, as will be discussed in Section
2, such a noise model does not ensure that individual solutions are well defined in
the Sobolev space H1

p and is therefore not suitable for the problem considered here.
Thus, for the remainder of this paper, we shall restrict our attention to the case
where ζ is the derivative of a Wiener process with finite variance, which is the most
“aggressive” stochastic excitation still leaving problem (1) well-posed in H1

p (precise
definition is deferred to Section 2). We add that the stochastic Burgers equation is
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related to the Kardar-Parisi-Zhang equation, which has received some attention in
the literature [30, 38], except that the latter is typically studied in the presence of
noise which is white both in space and in time.

We now briefly summarize important results from the literature relevant to the
stochastic Burgers equation. The existence and uniqueness of solutions has been
proven in [11, 28] for the problem posed on the real line and in [42, 27] for a bounded
domain with Dirichlet boundary conditions. In all cases, solutions can be regarded
as continuous Lp-valued random processes. For the bounded domain (the case
which we are interested in), convergence of numerical schemes has been established
in [2] for the finite-difference approaches and in [12] for Galerkin approximations.
However, in both cases only Dirichlet boundary conditions were considered. The
case with the periodic boundary conditions has been recently considered in [29] for
a larger class of Burgers-type equations and an abstract numerical scheme.

There exists a large body of literature devoted to investigations of stochastically
forced Burgers equation used as a model for three-dimensional (3D) turbulence. Be-
low we mention a few landmark studies and refer the reader to the survey paper [10]
for additional details and references. The majority of these investigations aimed to
characterize the solutions obtained in statistical equilibrium, attained by averaging
over sufficiently long times, in terms of properties of the stochastic forcing. Given
the motivation to obtain insights about actual turbulent flows, the main quantities
of interest in these studies were the scaling of the energy spectrum, evidence for
intermittency in the anomalous scaling of the structure functions and the statis-
tics of ∂xu, such as the tails (exponential vs. algebraic) of its probability density
function [15, 16, 46]. Remarkably, some of these results were also established with
mathematical rigour [13]. The aforementioned quantities were also studied in flows
evolving from stochastic initial data [25]. In this context we mention the investiga-
tions [45, 44] which focused on the statistics of shock waves in the limit of vanishing
viscosity ν. As regards technical developments, a number of interesting results were
obtained using optimization-based instanton formulations [38, 9, 26]. While most
of earlier investigations of stochastic problems in hydrodynamics were concerned
with the properties of the statistically steady state obtained in the long-time limit
[35], the focus of the present investigation is fundamentally different, as here we ex-
plore extreme forms of the transient behavior under stochastic excitation. In other
words, instead of studying the behavior in a time-averaged sense, we seek to un-
derstand how the worst-case scenarios are affected by stochastic forcing. The idea
that stochastic excitation could act to re-establish global well-posedness in a system
exhibiting a finite-time blow-up in the deterministic setting has been considered for
some time, although more progress has been made on the related problem of restor-
ing uniqueness [22]. The rationale for why noise might prevent the formation of
singularities is that in some situations blow-up may require a simultaneous occur-
rence of certain conditions (phenomena) and this coincidence may be disrupted by
stochastic excitations. There are in fact some model problems where such mecha-
nism of regularization by noise has been proved to exist, including certain transport
equations [22] and some versions of the Schrödinger equation [18]. While there are
a few related results available for the 3D Navier-Stokes and Euler equations [23],
here we mention the studies [3, 4] where it was shown that singularity formation
(gradient blow-up) in the inviscid Burgers equation can be prevented by a certain
stochastic excitation of the associated Lagrangian particle trajectories.
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Figure 1. (a) Space-time evolution of the solution u(t, x) and (b)
history of the enstrophy E(u(t)) in a solution of the deterministic
Burgers equation with an extreme initial condition g̃E0,T . In figure
(a) the level sets of u(t, x) are plotted with increments of 0.1.

However, there are also cases in which noise may amplify formation of singulari-
ties. For example, the paper [20] deals with the stochastic inviscid Burgers equation
in which the stochastic forcing is periodic in the spatial coordinate and represented
by white noise in time. The authors show that introducing noise increases the num-
ber of shocks present in the stochastic solution as compared to the deterministic
case. In particular, this means that solutions are discontinuous (at almost all times
t) and belong in a space of locally integrable functions. We will return to these
results at the end of the paper.

For deterministic systems which exhibit blow-up, singularity formation is typi-
cally signalled by unbounded growth of certain Sobolev norms [33]. This growth can
often be estimated using bounds obtained with methods of functional analysis and
even for problems which are globally well-posed, such as the viscous Burgers equa-
tion [34], it is important to understand how much these Sobolev norms can grow
depending on the “size” of the initial data as this can provide valuable insights con-
cerning the sharpness of the corresponding estimates. These issues are at the heart
of the recently undertaken research program aiming to probe the sharpness of fun-
damental estimates on the growth of quadratic quantities in hydrodynamic models
[5, 6, 7]. These estimates are of two types, namely, concerning the instantaneous
growth (i.e., the rate of change at a fixed instant of time) and growth over finite
time windows. Important progress has also been made on some related questions
in the context of the 3D Navier-Stokes problem [37, 8] which is in fact what has
motivated this research program.

For Burgers equation the key quantity of interest is the H1 seminorm of the
solution referred to as enstrophy

E(u(t)) :=
1

2

∫ 1

0

|∂xu(t, x)|2 dx. (3)

In the deterministic setting (ζ ≡ 0 in (1a)), where Burgers equation is known to
be globally well-posed [34], its solutions generically exhibit a steepening of the gra-
dients (driven by the nonlinearity) followed by their viscous dissipation when the
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linear dissipative term starts to dominate. This behavior is manifested by an initial
growth of enstrophy E(u(t)), which peaks when the solution u(t, ·) builds up the
steepest front, followed by its eventual decay to zero. As a point of reference, we
illustrate this generic behavior in Figure 1 in which the results were obtained by solv-
ing system (1) with ζ ≡ 0, T = 1 and an “extreme” initial condition g̃E0,T designed
to produce a maximum enstrophy growth over [0, 1] for a given E0 := E(g̃E0,T ) [5]
(the numerical approach used to obtain the results in Figure 1 and the construction
of the extreme initial data g̃E0,T will be described in Sections 3 and 4, respectively).
Although the evolution shown in Figure 1 corresponds to a special choice of the
initial data, it is qualitatively similar to the generic case. While the best estimate
for the finite-time growth of enstrophy predicts maxt≥0 E(t) ≤ C E3

0 for some C > 0,

where E0 := E(0) = 1
2

∫ 1

0
|∂xg(x)|2 dx, computational evidence was presented in [5]

that this estimate may not in fact be sharp and the largest possible growth of enstro-

phy actually scales as maxt≥0 E(t) ∼ E3/2
0 . Given the relation between the growth of

their Sobolev norms and the extreme (in particular, singular) behavior of solutions,
it is important to understand whether this growth of enstrophy may be affected by
stochastic excitation. The main goal of the present study is therefore to address this
question in the context of the 1D Burgers equation. In order to do so, we will have
to use a more “aggressive” form of stochastic excitation than was used in earlier
investigations of the stochastic Burgers problem where the forcing acted mostly on
large scales. While this question is clearly of mathematical nature, in the absence of
any theoretical estimates available for the effect of noise, either instantaneously or
in finite time, on the growth of Sobolev norms of solutions to evolutionary stochastic
PDEs, we will address it here through a series of carefully designed and executed
computational experiments. The intention is that these results may motivate and
guide further mathematical analysis of this problem. We add that, with the excep-
tion of the study [18], which concerned the stochastic Schrödinger equation, to the
best of our knowledge there have been no computational studies of such problems.

1.1. Summary of the main results. The main question we address here is how
the growth of the enstrophy described by stochastic system (1), both in terms
of individual trajectories and statistical properties, depends on the properties of
the noise term in equation (1a), in particular, whether this growth is enhanced or
weakened in comparison to the growth observed in the deterministic system [5],
cf. Figure 1. We have made the following observations:

• individual samples of the stochastic solution tend to exhibit a larger growth
of enstrophy than the deterministic solution,

• when the noise magnitude is sufficiently large relative to the initial enstrophy
E0, the dynamics of individual sample solutions is entirely dominated by noise
and exhibits little effect of the initial data,

• when the noise magnitude is small relative to the initial enstrophy, individ-
ual solution samples can be regarded as “perturbations” of the deterministic
evolution with enstrophy growth dependent on E0,

• in statistical terms, the enstrophy growth maxt∈[0,T ] E(t) in the deterministic
case provides

– an upper bound for the growth of the enstrophy of the expected value
maxt∈[0,T ] E(E[u(t)]), and

– a lower bound for the growth of the expected value of the enstrophy
maxt∈[0,T ] E[E(u(t))],
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• when the noise magnitude increases proportionally to the initial enstrophy
E0, the same growth of the expected value of the enstrophy is observed as in
the deterministic case; this leads us to conclude that inclusion of stochastic
forcing does not trigger any new mechanisms of enstrophy amplification.

The remainder of this paper is divided as follows: in the next section we describe
our model of noise and discuss some properties of the stochastic solutions; the
numerical approach is introduced briefly in Section 3, whereas the computational
results are presented and discussed in Section 4; conclusions are presented in Section
5.

2. Structure of the stochastic forcing and properties of the solution.
As is customary in the standard theory of stochastic partial differential equations
(SPDEs), we write the stochastic Burgers equation (1a) in the differential form [36]

du =

(
ν∂2

xu−
1

2
∂xu

2

)
dt+ σ dW, (4)

where ζ = σ dWdt in which σ > 0 is a constant and W (t) is a cylindrical Wiener
process. One can consider different notions of solution of system (1). Due to the
lack of smoothness of the noise term, we do not expect to obtain solutions defined
in the classical sense (i.e., solutions continuously differentiable with respect to the
independent variables). One can, however, define the notion of a mild solution as
in [42]

u(t) = etAg−1

2

∫ t

0

e(t−s)A∂xu
2 ds+ σ

∫ t

0

e(t−s)A dW (s), (5)

where A := ν∂2
x and the action of etA on L2 functions is determined by the identity

etA e2πikx = e−4π2νtk2 e2πikx, k ∈ Z, x ∈ [0, 1].

We remark that other notions of solution also exist, for example, the notion of a
weak solution as defined in [2].

As regards the structure of the stochastic forcing, {W (t)}t≥0 is formally given
by

W (t) =
∑
j∈N

γjβj(t)χj , (6)

where {βj(t)}j∈N are i.i.d standard Brownian motions, {χj}j∈N form a trigonometric
orthonormal basis, i.e.,

χ0 = 1, χ2j =
√

2 cos(2πjx), χ2j−1 =
√

2 sin(2πjx), j > 0 (7)

and {γj}j∈N are scaling coefficients. When ∀j γj = 1, W is an infinite-variance
Wiener process and ζ is Gaussian noise white in both time and space, which is
commonly used in investigations of SPDEs. However, this choice is not suitable for
the present study, since we are interested here in the effects of stochastic excitation
on the enstrophy, cf. (3), and, as is demonstrated below, this quantity is in fact not
defined for the Gaussian noise white in space.

Suppose u is a mild solution satisfying equation (5) with an infinite-variance noise
W . For convenience, let φk := e2πikx, k ∈ Z, denote elements of the orthonormal
Fourier basis. We now study each of the terms appearing on the right-hand side of
(5).
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Analysis of first term: under the assumption that g ∈ L2
p, so that

∑
k∈Z |ĝk|2 <

∞, we have that etAg ∈ H1
p (actually H`

p for any ` ≥ 0), since

‖etAg‖2H1
p

=
∑
k∈Z

1 + 4π2k2

e4νπ2k2t
|ĝk|2 <∞

which is true because the exponentials dominate all other factors.
Analysis of second term: under the assumption that u ∈ L2(Ω, C([0, T ], L4

p)),

so that u2 ∈ L2(Ω, C([0, T ], L2
p)), we can write

u2 =
∑
k∈Z

ŷkφk with
∑
k∈Z
‖ŷk‖2L2(Ω,C([0,T ],C)) =

∑
k∈Z

E
[

sup
0≤t≤T

|ŷk|2
]
<∞,

so that

∂xu
2 = 2πi

∑
k∈Z

kŷkφk

and ∫ t

0

1

2
e(t−s)A∂xu

2 ds =
∑
k∈Z

[∫ t

0

2πi

2
ke−4νπ2k2(t−s)ŷk(s) ds

]
φk;

now each of the coefficients in the sum above can be bounded as∣∣∣∣∫ t

0

2πi

2
ke−4νπ2k2(t−s)ŷk(s) ds

∣∣∣∣ ≤ ∫ t

0

πke−4νπ2k2(t−s)ds sup
0≤t≤T

|ŷk|

=
1

νπk

(
1− e−8νπ2k2t

)
sup

0≤t≤T
|ŷk| ≤

1

νπk
sup

0≤t≤T
|ŷk|,

so that the second term in (5) is also in H1
p with∥∥∥∥∫ t

0

1

2
e(t−s)A∂xu

2 ds

∥∥∥∥2

L2(Ω,H1
p)

≤
∑
k∈Z

(1 + 4π2k2)

∥∥∥∥ 1

νπk
sup

0≤t≤T
|ŷk|
∥∥∥∥2

L2(Ω,C)

=
∑
k∈Z

1 + 4π2k2

ν2π2k2
‖ŷk‖2L2(Ω,C([0,T ],C)) <∞

which follows from the summability of ‖ŷk‖2.
Analysis of third term: writing it in terms of a Fourier series

σ

∫ t

0

e(t−s)A dW (s) =
∑
k∈Z

Ŵk(t)φk,

we obtain (for k > 0 with the cases k = 0 and k < 0 handled similarly)

Ŵk(t) = σ

∫ t

0

e−4νπ2k2(t−s)

(√
2

2
dβ2k(s)− i

√
2

2
dβ2k−1(s)

)
which is a random variable with the second moment given by

‖Ŵk(t)‖2L2(Ω,C) = σ2

∫ t

0

e−8νπ2k2(t−s) ds =
σ2

8νπ2k2

(
1− e−8νπ2k2t

)
;
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from this we see that the third term is in L2 but not in H1
p , as for any t > 0 we

have∥∥∥∥σ ∫ t

0

e(t−s)A dW (s)

∥∥∥∥2

L2(Ω,H1
p)

=
∑
k∈Z

(1 + 4π2k2)‖Ŵk‖2L2(Ω,C)

=
σ2

8νπ2

∑
k∈Z

1 + 4π2k2

k2
(1− e−8νπ2k2t) =∞.

We therefore conclude that while the first two terms on the right-hand side of (5)
are in H1

p (and hence also in L2), the third one is only in L2 and not in H1
p . Thus,

for any t > 0, u(t), being the left-hand side of (5), is in L2 but not in H1
p , and

consequently the enstrophy obtained with Gaussian noise white in space is not well
defined.

We shall thus focus on noise representations with `2-summable coefficients, such
as

γ0 = 1, γ2k+1 = γ2k+2 =
1

k
, k > 0, (8)

so that W (t) has a finite variance, meaning that it is square-integrable in L2, i.e.,
W (t) ∈ L2(Ω, L2), with the norm

‖W (t)‖2L2(Ω,L2) =
∑
j∈N
|γj |2‖βj(t)‖2L2(Ω,C)‖χj‖

2
L2 = t

∑
j∈N

γ2
j =

(
1 +

π2

3

)
t. (9)

Such a finite-variance Wiener process ensures that the enstrophy is a well-defined
quantity. The corresponding term ζ in equation (1a) will be referred to as the
Gaussian colored-in-space noise. We add that a finite-variance Wiener process may
also be constructed with scaling coefficients {γj}j∈N decaying a bit less rapidly

than indicated in (8), namely as γ2k+1 = γ2k+2 = 1/k1/2+ε or γ2k+1 = γ2k+2 =
(ln k)1+ε/k, k > 0, for some ε > 0. We tested stochastic actuation with such
structure computationally, but in terms of the quantities we are interested in there
was no appreciable difference with respect to (8). Therefore, hereafter we will focus
on stochastic excitations defined by (8).

3. Numerical approach. System (1) will be discretized with respect to the three
independent variables, namely, the space variable x, time t and the stochastic vari-
able ω ∈ Ω. Since our numerical approach is fairly standard (similar techniques
were employed in [15, 16]), we describe it below only briefly. The approach is then
validated in Section 3.1.

Discretization with respect to the space variable x is performed using a spectral
approach based on truncated Fourier series. Since the nonlinear term (1/2)∂xu

2 is
represented as a convolution sum in the Fourier space, it can be evaluated more
efficiently in the physical space with a pseudospectral approach based on the Fast
Fourier Transforms (FFTs) combined with dealiasing based on the “3/2” rule [14].
We let K denote the discretization parameter equal to the number of Fourier modes,
so that K = bM3 c, where M is the number of grid points in the physical space. To
maximize the performance of FFTs, M will be taken to be a large power of 2.

Discretization with respect to the time variable t is performed using a finite-
difference approach based on a uniform grid in time. We use a semi-implicit (first-
order) Euler method in which the dissipative term is treated implicitly, whereas
the nonlinear and the stochastic terms are treated explicitly. We let N denote the
discretization parameter representing the number of time steps in the interval [0, T ].
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Discretization of the stochastic forcing ζ is performed using a Monte Carlo ap-
proach to sample the distribution of the stochastic variable ω ∈ Ω. We compute
realizations of the stochastic solution for a sequence of noise samples which, con-
sistently with the spectral approach to discretization in space, are represented as
random realizations of the coefficients {βj(t)}j∈N in Fourier expansion (6). The
expected values of the Fourier coefficients of the solution can then be approximated
using the average estimator [36, Section 4.4]. We let S denote the discretization
parameter representing the number of samples.

For k = 0, . . .K, n = 0, . . . , N and s = 1, . . . , S, we let ûK,N,Sk,n,s denote the s-

th realization of the k-th Fourier mode of u = u(t, x;ω) at time tn = n
N T . We

recall that we wish to compute the enstrophy of the solution, defined in (3). In
the stochastic setting, there are two distinct quantities of interest: one can either
consider the enstrophy of the expected value of the stochastic solution, or the expected
value of the enstrophy of the stochastic solution. Estimates of both these quantities
can be obtained using the expressions

E(E[u(tn)]) ≈
K∑
k=1

4π2k2

∣∣∣∣∣ 1S
S∑
s=1

ûK,N,Sk,n,s

∣∣∣∣∣
2

, (10a)

E[E(u(tn))] ≈
K∑
k=1

4π2k2 1

S

S∑
s=1

∣∣∣ûK,N,Sk,n,s

∣∣∣2 . (10b)

These two quantities (and also their estimates) are related via Jensen’s inequality
[36]

E(E[u(t)]) ≤ E[E(u(t))]. (11)

The reason for also including E(E[u(t)]) in our analysis is that quantities related
to averaged (mean) fields are often employed in statistical theories of turbulent
flows [41, 17], e.g., in the context of the so-called Reynolds-Averaged Navier-Stokes
equations.

Our choice of the Monte Carlo approach to noise sampling is motivated by its
well-understood convergence properties and straightforward implementation. While
more modern approaches, such as polynomial chaos expansions, may in principle
achieve faster convergence, they suffer from much higher computational complexity
(at least polynomial in the number of random variables, which is N(2K + 1) for
our discretization). Moreover, the nonlinear term will have a rather complicated
expression in the polynomial orthonormal basis, a challenge which does not arise
only in linear problems [36, Chapter 9]. We also remark that the low-order of the
time-integration scheme in our approach is justified by the need to simultaneously
account for stochastic excitation which is not a smooth function of time.

3.1. Validation. Since a rigorous convergence proof of the numerical approach
presented above would be outside the scope of the present study, we limit ourselves
to showing computational evidence that this approach is indeed convergent. Given
that there are three numerical parameters, M , N and S, this is achieved by studying
solutions to problem (5) as each of the three parameters is refined with the other two
held fixed. In each case we monitor the difference between approximations of the
quantities (10a) and (10b) and their values corresponding to the reference solution
obtained with the finest discretization: K = 341 = b 1024

3 c dealiased complex Fourier
modes (corresponding to M = 1024 grid points in the physical space), N = 20, 000
time steps and S = 1000 Monte Carlo samples. These results, obtained using the
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initial data g̃E0,T with E0 = 10 and T = 1, are presented in Figures 2a,b,c. In Figure
2a, showing the effect of the spatial discretization parameter M with N = 20, 000
and S = 1000 fixed, we see that the rate of decrease of the error increases with M ,
which is an indication of spectral convergence. In Figure 2b, showing the effect of
the temporal discretization parameter N with M = 1024 and S = 1000 fixed, we
observe linear convergence of the errors for both quantities of interest. Finally, in
Figure 2c, showing the effect of the stochastic sampling parameter S with M = 1024
and N = 20, 000 fixed, we see that the rate of convergence of the error is about
1/2. We thus conclude that the proposed numerical approach is convergent, with
the expected rates of convergence [36], as each of the three numerical parameters is
refined. The numerical parameters characterizing the reference solution described
above represent a reasonable trade-off between accuracy and computational cost,
and were used to obtain the results presented in Section 4. To simplify the notation,
we will use the symbol u = u(t, x;ω) to represent the solution obtained numerically
with these parameter values.

4. Computational results. In this section we use the numerical approach in-
troduced above to study the effect of the stochastic excitation with the structure
described in Section 2 on the enstrophy growth in the solutions of Burgers equa-
tion. More specifically, we will address the question formulated in Introduction,
namely, whether or not the presence of noise can change the maximum growth of
enstrophy observed in the deterministic setting in [5]. We will do so by studying
how the growth of the two quantities, E(E[u]) and E[E(u)] introduced in Section
3, is affected by the stochastic excitation as a function of the initial enstrophy

E0 = 1
2

∫ 1

0
|∂xg(x)|2 dx. Given time intervals of different length T , we will solve

system (1) subject to optimal initial condition g̃E0,T which is designed to produce
the largest possible growth of enstrophy at time T for all initial data in H1

p with
enstrophy E0. The procedure for obtaining such optimal initial data is discussed in
[5] and the optimal initial conditions corresponding to E0 = 10 and different time
windows T are shown in Figure 3. We see in this figure that, as T increases, the form
of the optimal initial data changes from a “shock wave” to a “rarefaction wave”.
We remark that the optimal initial data g̃E0,T was obtained in the deterministic
setting and, as such, might not produce optimal enstrophy growth in the presence
of stochastic forcing. To probe such possibility, we also conducted tests with other
initial conditions in the form g(x) = A sin(2πkx), where k = 1, 2, . . . and A ∈ R
was chosen to satisfy the condition E(g) = E0. We note that for different values
of k such initial conditions represent mutually orthogonal “directions” in the space
H1
p (0, 1). However, in all such cases the observed growth of E(E[u]) and E[E(u)]

was always inferior to the growth obtained with the initial data g̃E0,T , hence these
results are not reported here.

In the subsections below we first recall some properties of the extreme enstrophy
growth in the deterministic setting and then discuss the effect of the noise on the
enstrophy growth over time and globally as a function of E0.

4.1. Deterministic case revisited. The deterministic case will serve as a refer-
ence and here we summarize some key facts about the corresponding maximum
enstrophy growth. The reader is referred to studies [5, 37, 40, 39] for additional
details. As illustrated in Figure 1, a typical behavior of the solutions to Burgers
equation involves a steepening of the initial gradients, which is manifested as a
growth of enstrophy, followed by their dissipation when the enstrophy eventually
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Figure 2. Errors in the numerical approximations of E(E[u(T )])
(blue lines and circles) and E[E(u(T ))] (green lines and squares)
as functions of (a) the spatial discretization parameter M with
N = 20, 000 and S = 1000 fixed, (b) the temporal discretization
parameter N with M = 1024 and S = 1000 fixed and (c) the
sampling discretization parameter S with M = 1024 and N =
20, 000 fixed. The initial data used was g̃E0,T with E0 = 10 and
T = 1, and the errors are evaluated with respect to the reference
solutions computed with M = 1024, N = 20, 000 and S = 1000.
The dashed black lines correspond to the power laws (a) CM−2,
CM−3, and CM−4 , (b) CN−1, and (c) CS−1/2 with suitably
adjusted constants C.

decreases. The key question is how the enstrophy at some fixed time E(T ), or the
maximum enstrophy maxt∈[0,T ] E(t), depend on the initial enstrophy E0. While the

sharpest available analytical estimate predicts maxt≥0 E(t) ≤ C E3
0 for large E0, it

was found in [5] that under the most extreme circumstances the actual system evo-

lution does not saturate this upper bound producing instead maxt∈[0,T ] E(t) ∼ E3/2
0 .

These results are illustrated in Figure 4a,b, where we can also see that for very short
evolution times growth only linear in E0 is observed (this is because for small E0 the
solutions do not have enough time to produce sharp gradients). Since for increasing
E0 the maximum growth of enstrophy is achieved for different T , the power-law
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Figure 3. Optimal initial conditions g̃E0,T (x) for E0 = 10 and T
ranging from 10−3 to 1 [5] (arrows indicate the directions of increase
of T ).
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Figure 4. Dependence of (a) the enstrophy E(T ) at a final time
T and (b) the maximum enstrophy maxt∈[0,T ] E(t) on the initial
enstrophy E0 for the optimal initial data g̃E0,T with T in the range
from 10−3 to 1. Arrows indicate the direction of increasing T and

the dashed lines correspond to the power law C E3/2
0 .

behavior is obtained by taking a maximum of E(T ) or maxt∈[0,T ] E(t) with respect
to T (represented in Figures 4a,b as “envelopes” of the curves corresponding to
different values of T ).

4.2. Effect of noise on time evolution. We now analyze the effect of noise, both
in terms of individual trajectories and in the statistical sense, as a function of time
during the evolution starting from the optimal initial data g̃E0,T with enstrophy
E0 = 10 and a fixed final time T = 1. Stochastic solutions corresponding to “small”
noise magnitude σ2 = 10−2 and “large” noise magnitude σ2 = 1 are illustrated in
Figures 5 and 6, respectively. The individual stochastic trajectories are shown as
functions of space and time in Figures 5a and 6a. We see that in the small-noise
case the effect of the stochastic excitation is to gradually change the position of the
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“shock wave” (cf. Figures 1a and 5a). In the large-noise case the steep gradient
region from the initial data is gone and is replaced with spontaneously appear-
ing and interacting shocks which move in a largely structureless field (Figure 6a).
The corresponding evolutions of the enstrophy of some sample stochastic solutions
E(u(t;ωs)), s = 1, 2, the expected value of the enstrophy E[E(u(t))] and the enstro-
phy of the expected value of the solution E(E[u(t)]) are shown in Figures 5b and
6b for the two noise levels where they are also compared to the enstrophy evolution
E(t) in the deterministic case. We see that the enstrophy of the sample stochastic
solutions tends to exceed the enstrophy of the deterministic solution for most, albeit
not all, times. As regards the relation of the the expected value of the enstrophy
E[E(u(t))] and the enstrophy of the expected value of the solution E(E[u(t)]) to the
enstrophy E(t) in the deterministic case, the following relationship is observed

E(E[u(t)]) ≤ E(t) ≤ E[E(u(t))], t > 0 (12)

for both noise levels. While the relation between E(E[u(t)]) and E[E(u(t))] is a
consequence of Jensen’s inequality (11), the fact that these two quantities in fact
bracket the enstrophy of the deterministic solution uniformly in time appears rather
non-obvious. This conclusion is further elaborated in Figure 7 where we show the
time evolution of the three quantities from (12) for increasing noise levels. We
see that the difference between E(E[u(t)]) and E[E(u(t))] increases with the noise
magnitude σ2, such that at large noise levels the enstrophy of the expected value
of the solution exhibits no growth at all. The fluctuations evident in E(E[u(t)])
corresponding to the largest noise level are a numerical artefact resulting from an
insufficient number of Monte Carlo samples, due to the fact that increased noise
levels slow down the convergence of the Monte Carlo approach.

The distributions of the maximum enstrophy values maxt≥0 E(u(t;ω)) corre-
sponding to different stochastic realizations ω of the noise are shown for the cases
with E0 = 10, 103 and T = 1 as probability distribution functions (PDFs) in Fig-
ures 8(a,b). It is evident from these figures that the PDFs are non-Gaussian and,
in particular, are asymmetric with heavy, possibly algebraic, tails characterizing
values of maxt≥0 E(u(t, ω)) larger than E[maxt≥0 E(u(t))]. However, it is also clear
that the deviation from the Gaussian behavior is significantly smaller in the larger
enstrophy case (Figure 8(b)) than in the lower enstrophy case (Figure 8(a)). This
deviation also tends to increase with the noise magnitude σ2.

4.3. Global effect of noise on enstrophy growth for varying E0. In this
section we analyze how the diagnostic quantities

E[E(u(T ))], E(E[u(T )]), (13a)

max
t∈[0,T ]

E[E(u(t))], max
t∈[0,T ]

E(E[u(t)]) (13b)

for some given T depend on the initial enstrophy E0 and whether the presence of
the stochastic excitation modifies the power-law dependence of the quantities (13b)
on E0 as compared to the deterministic case (cf. Section 4.1). We will do this in two
cases, namely, when for different values of the initial enstrophy E0 the noise level
σ2 is fixed and when it is proportional to E0. Concerning the first case, Figures
9a and 9b show the dependence of the quantities (13a) and (13b) with T = 1 on
E0 for different fixed noise levels. The quantities E(E[u(T )]) and E[E(u(T ))] for
different time horizons T are plotted as functions of E0 for small and large noise
levels, respectively, in Figures 10 and 11. These plots are therefore the stochastic
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Figure 5. [Small noise case: σ2 = 10−2] (a) Sample stochastic
solution u(t, x) as a function of space and time (the level sets are
plotted with the increments of 0.1), (b) evolution of enstrophy of
two sample stochastic solutions E(u(t;ωs)), s = 1, 2, (green dash-
dotted lines), the enstrophy of the deterministic solution E(t) (black
solid line), the expected value of the enstrophy E[E(u(t))] (blue
dashed line) and the enstrophy of the expected value of the solution
E(E[u(t)]) (red dotted line). The initial data used was g̃E0,T with
E0 = 10 and T = 1. The inset in figure (b) shows details of the
evolution during the subinterval [0.35, 0.65].
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Figure 6. [Large noise case: σ2 = 1] (see previous figure for details).

counterparts of Figure 4 representing the deterministic case [5]. We see that with a
fixed T both E(E[u(T )]) and E[E(u(T ))] saturate at a level depending on the noise
magnitude σ2 (Figure 9a). Analogous behavior is observed for a fixed noise level
and increasing time intervals in Figures 10 and 11, from which we can also conclude
that when we maximize the quantities E(E[u(T )]) and E[E(u(T ))] over all considered

values of T , then the resulting quantity will scale proportionally to E3/2
0 , which is

the same behavior as observed in the deterministic case (Figure 4). The process
of maximizing with respect to T is represented schematically in Figures 10 and 11
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Figure 7. The expected value of the enstrophy E[E(u(t))] (dashed
lines), the enstrophy of the expected value of the solution E(E[u(t)])
(dotted lines) and the enstrophy E(t) of the deterministic solution
(thick solid line) as functions of time for the initial condition g̃E0,T
with E0 = 10, T = 1 and different noise levels σ2 in the range from
10−2 to 1 (the direction of increase of σ2 is indicated by arrows).

−4 −2 0 2 4
10

−3

10
−2

10
−1

10
0

(max E(u(t))-E[max E(u(t))])/StDev

P
D
F

(a)

−4 −2 0 2 4
10

−3

10
−2

10
−1

10
0

(max E(u(t))-E[max E(u(t))])/StDev

P
D
F

(b)

Figure 8. Normalized PDFs of the maximum enstrophy values
maxt≥0 E(u(t, ω)) for the cases with the initial condition g̃E0,T with
T = 1 and (a) E0 = 10, (b) E0 = 103. The noise levels σ2 are equal
to 10−2 (green lines and crosses), 10−1 (blue lines and squares) and
1 (red lines and circles). To obtain these plots, S = 105 samples
were collected in each case and sorted into 30 equispaced bins. The
solid lines correspond to the standard Gaussian distributions.

as “envelopes” of the curves corresponding to different values of T . Regarding the
behavior of the quantities (13b), for every noise level we observe a transition from
a noise-dominated behavior, where maxt∈[0,T ] E[E(u(t))] does not increase with E0
when E0 is small, to a nonlinearity-dominated regime in which maxt∈[0,T ] E[E(u(t))]
grows with E0 (Figure 9b). In the latter regime, corresponding to large values of E0
and whose lower bound is an increasing function of the noise magnitude, we observe
that for sufficiently large E0 the growth of the quantity maxt∈[0,T ] E[E(u(t))] in all
cases approaches the growth observed in the deterministic case [5].
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Figure 9. (a) The values at T = 1 and (b) the maximum values
attained in [0, T ] of the expected value of the enstrophy E[E(u(t))]
(dashed lines), the enstrophy of the expected value of the solution
E(E[u(t)]) (dotted lines) and the enstrophy E(t) of the deterministic
solution (thick solid line) as functions of the initial enstrophy E0 for
the initial condition g̃E0,T with E0 = 10, T = 1 and different noise
levels σ2 in the range from 10−2 to 1 (the direction of increase of
σ2 is indicated by arrows)

Since the results presented above show no evidence of the effect of noise on the
dependence of the quantities (13) on E0 when E0 grows while the noise magnitude
stays fixed, to close this section we consider the case in which the noise magnitude
is proportional to E0, i.e.,

σ2 = Cσ E0, (14)

for a range of different constants Cσ. The quantities (13b) obtained in this way
are shown in Figures 12a and 12b. As regards the dependence of the quantity
maxt∈[0,T ] E(E[u(t)]) on E0, in Figure 12a we observe a superlinear growth which

is however slower than E3/2
0 characterizing the deterministic case (in fact, from the

data it is not entirely obvious if this dependence is strictly in the form of a power
law). Concerning the quantity maxt∈[0,T ] E[E(u(t))], Figure 12b indicates that while
for small E0 it is larger than maxt≥0 E(t) obtained in the deterministic case, in the
limit of E0 → ∞ it reveals the same growth as in the deterministic case, that is,

proportional to E3/2
0 with approximately the same constant prefactor.

5. Discussion and conclusions. The goal of this study was to test whether a
stochastic excitation applied to Burgers equation can affect the maximum growth of
enstrophy as a function of the initial enstrophy E0 observed in the deterministic case
[5]. In the context of hydrodynamic models based on the Navier-Stokes equation,
the enstrophy is a convenient indicator of the regularity of solutions and its growth
is inherently related to the problem of finite-time singularity formation [19]. In
the stochastic problem considered here, there are two relevant quantities related
to the enstrophy, namely, the expected value of the enstrophy E[E(u(t))] and the
enstrophy of the expected value of the solution E(E[u(t)]). They are related to
each other via Jensen’s inequality (11). In the set-up of our problem we allowed
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Figure 10. [Small noise case: σ2 = 10−2] Dependence of (a) the
enstrophy of the expected value of the solution E(E[u(T )]) and
(b) the expected value of the enstrophy E[E(u(T ))] on the initial
enstrophy E0 using the initial condition g̃E0,T with T varying from
10−3 to 1. In (a) the values of T are marked near the right edge of
the plot, whereas in (b) the direction of increasing T is indicated
with an arrow. The dashed lines correspond to the power law
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Figure 11. [Large noise case: σ2 = 1] (see previous figure for details).

for the most “aggressive” form of the stochastic excitation which still ensures that
the two quantities are well defined (cf. Section 2). The numerical discretization was
carefully designed based on the Monte Carlo sampling.

The effect of the noise was found to depend on the relation between its magni-
tude σ2 and the “size” of the initial data as measured by the initial enstrophy E0.
When the noise magnitude is large, the stochastic excitation obscures the intrin-
sic dynamics and any dependence of the diagnostic quantities (13) on E0 is lost.
Therefore, the relevant regime is when the noise magnitude is “modest” relative
to the initial enstrophy E0, so that the stochastic excitation can be regarded as a
“perturbation” of the deterministic dynamics. We observe that the two quantities
E[E(u(t))] and E(E[u(t)]) provide, respectively, upper and lower bounds on the en-
strophy E(t) in the deterministic case, cf. (12), with the bounds becoming tighter as
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Figure 12. Dependence of (a) the maximum enstrophy of the ex-
pected value of the solution maxt∈[0,T ] E(E[u(t)]) and (b) the max-
imum expected value of the enstrophy maxt∈[0,T ] E[E(u(t))] on the
initial enstrophy E0 using the initial conditions g̃E0,T and with noise
magnitudes proportional to E0, cf. (14), with Cσ in the range from
10−3 to 10−1 (arrow indicate the direction of increase of Cσ). The
parameter T is chosen to maximize maxt∈[0,T ] E(E[u(t)]) in (a) and
maxt∈[0,T ] E[E(u(t))] in (b). The thick black solid line corresponds
to the quantity maxt∈[0,T ] E(t) obtained in the deterministic case,
whereas the thin black solid line in (a) represents the power law
E1

0 .

the noise magnitude vanishes (Figure 7). The fact that the deterministic enstrophy
E(t) is “bracketed” by E[E(u(t))] and E(E[u(t)]) appears to be a new, though not
entirely unexpected, finding. The latter case, with the enstrophy of the expected
value of the solution E(E[u(t)]) being lower than the deterministic enstrophy E(t),
can be therefore interpreted in terms of the stochastic excitation having the effect
of an increased dissipation of the expected value of the solution.

The non-Gaussian PDFs of the normalized maximum enstrophy maxt≥0 E(u(t, ω))
in Figures 8(a,b) indicate the likelihood of events when larger-than-average enstro-
phy maxima are achieved, although this property becomes less pronounced as the
enstrophy E0 of the initial condition grows. This can be interpreted to mean that
as the magnitude of the nonlinear effects increases, the transient evolution becomes
less susceptible to stochastic excitation. We note that non-Gaussian PDFs of so-
lution derivatives ∂xu in stochastic Burgers flows were also reported and analyzed
in [15, 16, 46, 25] (since in those studies the PDFs were computed for a different
quantity, the actual shapes of the distributions and their dependence on parameters
were different).

As regards the expected value of the enstrophy, we observed in Figure 12a that
in the limit E0 → ∞ the quantity maxt≥0 E[E(u(t))] exhibits the same dependence

on E0 as in the deterministic case, i.e., it remains proportional to E3/2
0 , even for the

noise magnitude increasing proportionally to E0. Thus, this demonstrates that the
stochastic excitation does not damp the maximum growth of enstrophy as a function
of the initial enstrophy E0. This observation is further reinforced by the PDFs of
maxt≥0 E(u(t, ω)) shown in Figures 8(a,b) which are skewed towards values larger



TRANSIENT GROWTH IN STOCHASTIC BURGERS FLOWS 19

than E[maxt≥0 E(u(t))], but approach the Gaussian distribution as E0 increases.
In the light of the findings reported in [3, 4], where it was shown that a certain
stochastic excitation can regularize the inviscid Burgers equation, our result does
not appear entirely obvious. It can be however interpreted as a consequence of
the robustness of the shock-formation process which is not disturbed by stochastic
excitation. If these insights could be extrapolated to the 3D case, one could expect
that noise would be less likely to regularize the 3D Navier-Stokes system than the
corresponding Euler system.

We note that if we rescale the magnitude of the solution u as ua = a u for
some a > 0, then the stochastic Burgers equation (1a) will be left invariant if we
simultaneously rescale the time, viscosity and the forcing term as ta = t/a, νa = a ν
and ζa = a2 ζ. Therefore, the limit E0 → ∞ (while keeping ν fixed) considered in
the present study is equivalent to the limit ν → 0 (while keeping initial data fixed)
which was investigated in other studies [45, 44, 20]. In particular, it was shown in
[20] that inclusion of additive noise in the inviscid Burgers equation significantly
increases the number of shocks. This result is however not inconsistent with our
findings, since it corresponds to stochastic forcing with a finite magnitude, whereas
for the problem set-up considered here the limit ν → 0 would imply vanishing
magnitude (at the quadratic rate) of the forcing term.

A number of related questions remain open. First of all, in the present study
we numerically solved the stochastic Burgers equation (1) using the extreme initial
data g̃E0,T which was found in [5] by solving a deterministic variational optimization
problem. It is however possible that by solving a corresponding stochastic optimiza-
tion problem one might obtain initial data g leading to an even larger growth of
enstrophy in finite time. While such problems are harder to solve than the determin-
istic one, they are in principle amenable to solution using stochastic programming
methods [43]. We add that this approach would be distinct from the “instanton”
formulation [38, 9, 26] which due to the saddle-point approximation is effectively
equivalent to solution of a deterministic optimization problem. In a similar spirit, it
is equally interesting to obtain rigorous estimates on dE/dt and maxt≥0 E(t) in the
stochastic setting in terms of E0 and the properties of noise, thereby generalizing
the bounds available for the deterministic case [37, 5]. As regards effects of viscous
dissipation, it is well known [32] that the fractional Burgers equation is no longer
globally well posed when the fractional dissipation exponent α < 1/2. It would be
therefore interesting to see whether the finite-time blow-up known to occur in this
supercritical regime can be mollified by noise. Similar questions concerning the in-
terplay between the stochastic excitation and extreme behavior, including possible
singularity formation, also arise in the context of the two-dimensional and three-
dimensional Navier-Stokes and Euler equations. Addressing at least some of these
issues is one of the goals of the ongoing research program mentioned in Introduction.
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