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ABSTRACT
Since Genetic Programming (GP) has been proposed, several flavors

of GP have arisen, each with their own strengths and limitations.

Grammar-Guided and Strongly-Typed GP (GGGP and STGP, respec-

tively) are two popular flavors that have the advantage of allowing

the practitioner to impose syntactic and semantic restrictions on

the generated programs. GGGP makes use of (traditionally context-

free) grammars to restrict the generation of (and the application

of genetic operators on) individuals. By guiding this generation

according to a grammar, i.e. a set of rules, GGGP improves per-

formance by searching for an good-enough solution on a subset

of the search space. This approach has been extended with At-

tribute Grammars to encode semantic restrictions, while Context-

Free Grammars would only encode syntactic restrictions. STGP is

also able to restrict the shape of the generated programs using a

very simple grammar together with a type system. In this work,

we address the question of which approach has more expressive

power. We demonstrate that STGP has higher expressive power

than Context-Free GGGP and less expressive power than Attribute

Grammatical Evolution.

CCS CONCEPTS
• Theory of computation→ Grammars and context-free lan-
guages; • Mathematics of computing → Genetic program-
ming.
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1 INTRODUCTION
Genetic Programming is a heuristic method for the search problem

of finding a program. This abstract method has been successfully

applied to different domains, ranging from Program Synthesis [17]

to genomics [15]. Genetic Programming is typically used when

the search space is so wide that using enumerative methods is

not a feasible solution. However, practitioners often have domain

knowledge that could further reduce the search space. There are two

major approaches for encoding this domain-specific knowledge:

(1) consider the constraints in the fitness function, common for

soft-constraints; and (2) restrict the representation or genotype-

to-phenotype mapping, so invalid individuals are never created in

the first place, useful for hard constraints. Grammars and types

have been two popular approaches for restricting the program

representation [1].

Grammar-Guided GP [34] (GGGP) allowed the practitioner to

restrict the language of the program by specifying a context-free

grammar. Context-free grammars are used in the generation of indi-

viduals, in which the starting non-terminal element of the grammar

is recursively expanded until it reaches the maximum depth or a

complete program tree. The additional expressive power of gram-

mars allowed GP to be applied to more search-based software engi-

neering domains, like Software Testing [32], Algorithmic Design [5]

and Program Synthesis [11]. While the initially proposed methods

used a tree-based representation, Grammatical Evolution (GE) [29]

is a flavor of GGGP that uses a list-based genotypic representation.

We formalize the synthesis procedure of GGGP independently of

the representation (thus including both tree-based and GE flavors)

in Section 3. Attribute Grammar Evolution [4] (AGE) has been

proposed as an extension of Grammatical Evolution that uses the

semantic representation of attribute grammars to encode the val-

idation rules of individuals (but not necessarily their semantics).

We also formalize this version of GGGP, in Section 6.

Type systems have also been proposed as an alternative to cus-

tom grammars, with the same purpose of restricting the genera-

tion of program trees. The initial approach, Strongly-Typed GP

(STGP) [22], uses simple types like integer and boolean, to guar-

antee that the generated programs type-checked by construction,

thus excluding invalid programs from the search procedure. As

an example, STGP has been used to generate unit tests for object-

oriented software [33]. STGP has been extended with polymorphic

types and higher-order functions [2], approximating the features

of mainstream programming languages like Java or C♯. A bidirec-

tional tree generation algorithm that supports polymorphic types

has been shown to reduce the search space exponentially [18]. We

formalize the synthesis procedure of STGP in Section 4.
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GGGP has been consistently presented as being more general

than STGP [3, 21, 25, 31], with few disputes of the similarity in

expressive power [8, 9], without any evidence. We aim to clarify

the issue by comparing the relative expressive power of GGGP,

AGE and STGP from a theoretical perspective. An approach with

an higher expressive power would be able to restrict the generation

of programs more than others. As such, our main results establish

a hierarchy between these three models, and we prove that:

• STGP is more expressive than GGGP (Section 5).

• AGE is more expressive than GGGP (Section 7).

• AGE is more expressive than STGP (Section 8).

The contributions of this paper are two-fold. First, we provide

practitioners with a ranking in expressive power of the GGGP,

STGP and AGE. In our ranking, we evidence examples, which gen-

eralize for the limitations in expressing constraints on the search

space. Secondly, we lay the theoretical foundation for implementers

of other search-space-contraining approaches (e.g., Refined Typed

Genetic Programming [8, 9]) to formalize their work and show

theoretical properties, especially in comparison to these three base-

line approaches. We believe our work serves as a benchmark in

theoretical expressive power, much like there are benchmark suites

that are used to benchmark empirical performance [12].

2 FORMALIZING PROGRAMS
To evaluate the relative expressive power of the different synthesis

approaches, it is necessary to define a common notation for the

generated programs. While this representation does not have to

reflect the actual syntax tree, or tree representation, in the GP

environment, it has to be able to express all possible trees that can

be synthesized in any of the approaches.

We define the notion of program tree (PT), which represents a

synthesized program without any semantic. Because the semantics

is independent of the synthesis procedure, we do not care about the

evaluation semantics, which can be Turing or non-Turing complete.

Definition 2.1 (Program tree). Let𝑉 be a finite set of non-terminal

symbols, and Σ be a finite set of terminal symbols. A program tree

over (𝑉 , Σ) is either 𝐿𝑒𝑎𝑓 (𝑠) where 𝑠 ∈ Σ; or 𝐵𝑟𝑎𝑛𝑐ℎ(𝑆, 𝑝1, . . . , 𝑝𝑛)
where 𝑆 ∈ 𝑉 and 𝑝1, . . . , 𝑝𝑛 are a finite number of Program Trees

(PT). Terminal and non-terminal symbols are disjoint.

We do not enforce an arity𝑛 for the non-terminal symbols, i.e. we

can use the same symbol with different choices of 𝑛. The previous

definition also allows for empty branchings, when 𝑛 = 0: if 𝑆 ∈ 𝑉
then 𝐵𝑟𝑎𝑛𝑐ℎ(𝑆) is a PT.

The program (𝑥 ∗ 𝑦) + 3 can be represented as Branch(plus,

Branch(times, Leaf(x), Leaf(y)), Leaf(3)), following

a notation very similar to S-expressions in Lisp.

3 FORMALIZING GGGP
Grammar-Guided Genetic Programming (GGGP or G3P) [34] tradi-

tionally assumes context-free grammars. In this work, the repre-

sentation has no consequence, as both Tree-based [35] and Gram-

matical Evolution [29] approaches restrict trees to follow a CFG,

regardless of it happening in the generation of the genotype of

individuals, or later in the genotype-to-phenotype mapping. We

do acknowledge however, that the exploration of the search space

𝑠 ∈ Σ

(𝑉 , Σ, 𝑅, 𝑠) 𝐺
𝐿𝑒𝑎𝑓 (𝑠)

(CFG-Leaf)

(𝑆, 𝑠𝑖 ) ∈ 𝑅 (𝑉 , Σ, 𝑅, 𝑠𝑖 ) 𝐺
𝑝𝑖

𝑖

(𝑉 , Σ, 𝑅, 𝑆) 𝐺
𝐵𝑟𝑎𝑛𝑐ℎ(𝑆, 𝑝𝑖 )

(CFG-Branch)

Figure 1: The Synthesis Rules of GGGP.
of each representation is not the same [35], but we are concerned

only with the expressive power of the method. Christiansen Gram-

mars [26] are a context-dependent alternative, but they are not as

popular as context-free grammars in GP, due to their increased

complexity. We will cover them later in Section 6.

3.1 Context-free grammars
Definition 3.1 (Context-free grammar). A Context-free grammar

is described by the 4-tuple (𝑉 , Σ, 𝑅, 𝑆) where
(1) 𝑉 is a finite set of non-terminal symbols.

(2) Σ is a finite set of terminal symbols.

(3) 𝑅 is a finite relation in 𝑉 × (𝑉 ∪ Σ)∗.
(4) 𝑆 is the starting symbol. Unlike in other works, we allow 𝑆

to be either a member of𝑉 or Σ, allowing a CFG to express a

language with just one terminal, without using any variables.

We follow the traditional formalization of grammars in Theo-

retical Computer Science [30], with a small diference: The starting

symbol of a grammar is traditionally a non-terminal, whereas we

allow terminals. This change is done for convenience of the defini-

tion of the synthesis rule (e.g., Figure 1), allowing it to be recursive

on the starting symbol (instead of creating an auxiliar function

for the first expansion only). This does not change the expressive

power of context-free grammars because allowing a terminal 𝑠 as

the starting symbol corresponds to allowing a production 𝑆 → 𝑠

with starting symbol 𝑆 .

3.2 Grammar-Guided GP Synthesis
While the original GGGP [34] proposed a direct representation us-

ing trees, subsequent approaches have proposed other representa-

tions like arrays of integers [29] and arrays of arrays of integers [20].

Our formulation is independent of the representation used, and

describes what trees can be generated from a given grammar.

Definition 3.2 (CFG Synthesis). 𝑔 𝐺
𝑝 is a relation between a

context-free grammar 𝑔 and a program tree 𝑝 that represents that

𝑝 can be synthesized (obtained) from 𝑔.

We make use of inference rules to formalize the synthesis re-

lation, following the extensive work on program synthesis (e.g.,

Polikarpova and Solar-Lezama [28]) and type systems (e.g., Pierce

[27]). While it is not common in the GP community, we found no

need to invent a new formalism, when there is one already adopted

by a large community, including some work on Typed GP [19].

Briefly, if the premises above the line hold, so does the conclusion

below the line. Because branches can have multiple child nodes and

non-terminals can expand to several terminals and non-terminals,

we use the overline to represent repetition (e.g., 𝑐 represents multi-

ple instances of 𝑐 .), annotated with the repeating variable if needed,
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(𝑆, 𝑝𝑙𝑢𝑠) ∈ 𝑅

(𝑝𝑙𝑢𝑠, 𝑆 𝑆) ∈ 𝑅

(𝑆, 3) ∈ 𝑅

3 ∈ Σ
CFG-Leaf

(𝑉 , Σ, 𝑅, 3) 𝐺
𝐿𝑒𝑎𝑓 (3)

CFG-Branch

(𝑉 , Σ, 𝑅, 𝑆) 𝐺
𝐵𝑟𝑎𝑛𝑐ℎ(𝑆, 𝐿𝑒𝑎𝑓 (3))

(𝑆, 𝑥) ∈ 𝑅

𝑥 ∈ Σ
CFG-Leaf

(𝑉 , Σ, 𝑅, 𝑥) 𝐺
𝐿𝑒𝑎𝑓 (𝑥)

CFG-Branch

(𝑉 , Σ, 𝑅, 𝑆) 𝐺
𝐵𝑟𝑎𝑛𝑐ℎ(𝑆, 𝐿𝑒𝑎𝑓 (𝑥))

CFG-Branch

(𝑉 , Σ, 𝑅, 𝑝𝑙𝑢𝑠) 𝐺
𝐵𝑟𝑎𝑛𝑐ℎ(𝑝𝑙𝑢𝑠, 𝐵𝑟𝑎𝑛𝑐ℎ(𝑆, 𝐿𝑒𝑎𝑓 (3)), 𝐵𝑟𝑎𝑛𝑐ℎ(𝑆, 𝐿𝑒𝑎𝑓 (𝑥)))

CFG-Branch

(𝑉 , Σ, 𝑅, 𝑆) 𝐺
𝐵𝑟𝑎𝑛𝑐ℎ(𝑆, 𝐵𝑟𝑎𝑛𝑐ℎ(𝑝𝑙𝑢𝑠, 𝐵𝑟𝑎𝑛𝑐ℎ(𝑆, 𝐿𝑒𝑎𝑓 (3)), 𝐵𝑟𝑎𝑛𝑐ℎ(𝑆, 𝐿𝑒𝑎𝑓 (𝑥))))

Figure 2: Example of the GGGP synthesis of program 3+𝑥 from a grammar with terminals 𝑥 , 𝑦 and integers 𝑖, and non-terminals
𝑆 (start), 𝑃 (plus) and 𝑇 (times).

Types 𝑇 ::= 𝑡 | 𝑇 → 𝑇

Typing Contexts Γ ::= 𝜖 | Γ, 𝑥 : 𝑇
Evaluation Contexts Δ ::= · | Δ, 𝑥 ↦→ 𝑝

Expressions 𝑒 ::= 𝑥 | 𝑒𝑒 | 𝜆𝑥 : 𝑇 .𝑒
| 𝐿𝑒𝑎𝑓 (𝑛) | 𝐵𝑟𝑎𝑛𝑐ℎ(𝑛, 𝑒)

Figure 3: The syntax of STGP programs
also standard in these types of formalizations. Pierce [27] provides

a more comprehensive introduction to the notation.

In Figure 2 we show that the example 3 + 𝑥 can be synthesized

from a grammar with: terminals 𝑥 , 𝑦 and finite number of fixed-

width integers 𝑖; non-terminals 𝑆 (start), 𝑃 (plus) and𝑇 (times); rules

𝑆 → 𝑃 | 𝑇 | 𝑥 | 𝑦 | 𝑖 , 𝑃 → 𝑆 𝑆 and 𝑇 → 𝑆 𝑆 . Note that we are not

including the plus and times operator on the respective right-side

of the production, as they are not required syntactically because

they are recorded by the grammar expansion. Figure 2 depicts the

proof tree that shows that such an example can be derived from

the given grammar.

4 FORMALIZING STGP
In STGP, functions have typed parameters and a return type, which

must match. STGP can be applied to any typed language. We chose

to use a variation of Simply-Typed Lambda Calculus (STLC) [19]

for the sake of simplicity. Multiple arguments can be achieved via

currying. We implicitly assume that 𝑡 ranges over a set of base

types, that 𝑥 ranges over a set of expression variables, and that

𝑋 ranges over a set of symbols. In STGP there is no distinction

between terminal and non-terminal symbols, so we can think of 𝑋

as ranging over the correspondent of 𝑉 ∪ Σ in GGGP.

4.1 Syntax
Using the syntax on Figure 3, our expressions can encode both STLC

expressions (using only the three first productions), program trees

(using only the last two productions) or a mix of both. We say that

expressions that only have variables, abstractions and applications

to be in the Expression Normal Form (ENF) and expressions that

only have leaves and branches to be in the Tree Normal Form (TNF).

Thus, program trees correspond exactly to the expressions in TNF.

4.2 STGP Synthesis
Synthesis in STLC follows a syntax-directed approach (Figure 4),

taking inspiration from Synquid [28]. We use Γ ⊢ 𝑇 𝑆
𝑒 to denote

𝑥 : 𝑇 ∈ Γ

Γ ⊢ 𝑇 𝑆
𝑥

(STGP-Syn-Var)

Γ ⊢ 𝑈 → 𝑇
𝑆
𝑒1 Γ ⊢ 𝑈 𝑆

𝑒2

Γ ⊢ 𝑇 𝑆
𝑒1𝑒2

(STGP-Syn-App)

𝑓 𝑟𝑒𝑠ℎ(𝑥) Γ, 𝑥 : 𝑇 ⊢ 𝑒 𝑆
𝑈

Γ ⊢ 𝑇 → 𝑈
𝑆
𝜆𝑥 : 𝑇 .𝑒

(STGP-Syn-Abs)

Figure 4: The Term Synthesis Rules of STGP

𝑥 ↦→ 𝑝 ∈ Δ
Δ ⊢ 𝑥 −→ 𝑝

(STGP-Eval-Var)

Δ ⊢ 𝑒1 −→ 𝜆𝑥 : 𝑇 .𝑝1 Δ ⊢ 𝑒2 −→ 𝑝2

Δ ⊢ 𝑒1𝑒2 −→ 𝑝1 [𝑥 ↦→ 𝑝2]
(STGP-Eval-Beta)

Figure 5: The Evaluation Rules of STGP
that expression 𝑒 can be synthesized from type 𝑇 under the typing

context Γ. Similarly, we use Δ ⊢ 𝑒 −→ 𝑝 to denote that expression

𝑒 can be evaluated to expression 𝑝 under the evaluation context Δ,
a list of assignments of variables to expressions (𝑥 ↦→ 𝑒). Figures 4

and 5 present the Synthesis and Evaluation rules, using the same

notation as before.

Finally, we use Γ,Δ ⊢ 𝑇 𝑆𝐸
𝑝 to denote that Γ ⊢ 𝑇 𝑆

𝑒 and

Δ ⊢ 𝑒 −→ 𝑝 , for a compatible expression 𝑒 . For ease of exposition,

we introduce the concept of synthesis context to refer to a triple

(Γ,Δ,𝑇 ) where Γ is a typing context, Δ is an evaluation context,

and 𝑇 is a type.

5 COMPARING GGGPWITH STGP
Now that we have defined two models for synthesizing program

trees, namely GGGP and STGP, we can compare their corresponding

expressive powers. In this section, we show that STGP are strictly

more expressive than GGGP.

Theorem 5.1. For any context-free grammar (𝑉 , Σ, 𝑅, 𝑆), there
exists a synthesis context (Γ,Δ,𝑇 ) such that, for any program tree 𝑝 ,

(𝑉 , Σ, 𝑅, 𝑆) 𝐺
𝑝 if and only if Γ,Δ ⊢ 𝑇 𝑆𝐸

𝑝.

Proof. Given a context-free grammar (𝑉 , Σ, 𝑅, 𝑆), construct a
typing context and evaluation context as follows.

• for every (terminal or non-terminal) symbol 𝑋 , we introduce a

base type 𝑋𝑇 ;
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Terminals: Zero, One, "foo"

Non-terminals: Number, Plus, SizeOf, String

Rules: Number→ Zero

Number→ One

Number→ Plus

Number→ SizeOf

Plus→ Number Number

SizeOf→ String

String→ "foo"

Starting Symbol: Number

Table 1: Grammar example

• let 𝑟 = (𝑋,𝑌1, . . . 𝑌𝑛) ∈ 𝑅 be a production rule; we introduce an

expression variable 𝑟 , and include

𝑟 : 𝑌1𝑇 → · · · → 𝑌𝑛𝑇 → 𝑋𝑇 ,

𝑟 ↦→ 𝜆𝑦1 : 𝑌1𝑇 . · · · 𝜆𝑦𝑛 : 𝑌𝑛𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑋,𝑦1, · · · , 𝑦𝑛)
in the typing and evaluation contexts, respectively. In particular,

for 𝑛 = 0 and a production rule 𝑟 = (𝑋, 𝜀), we introduce an

expression variable 𝑟 , include 𝑟 : 𝑋𝑇 in the typing context, and

include 𝑟 ↦→ 𝐵𝑟𝑎𝑛𝑐ℎ(𝑋 ) in the evaluation context.

• for any terminal symbol 𝑢, we introduce an expression variable

𝑢, and include 𝑢 : 𝑢𝑇 , 𝑢 ↦→ 𝐿𝑒𝑎𝑓 (𝑢) in the typing and evaluation

contexts, respectively.

Now let 𝑝 be a program tree. We show, by induction on 𝑝 , that

(𝑉 , Σ, 𝑅, 𝑆) 𝐺
𝑝 if and only if Γ ⊢ 𝑆𝑇

𝑆
𝑒 and Δ ⊢ 𝑒 −→ 𝑝 for

some expression 𝑒 .

First suppose that 𝑝 = 𝐿𝑒𝑎𝑓 (𝑠) for some terminal symbol 𝑠 . If we

can derive (𝑉 , Σ, 𝑅, 𝑆) 𝐺
𝑝 , by inspection of the rules for CFGSyn-

thesis, we must have used the rule (CFG-Leaf), which implies that

𝑆 = 𝑠 . Therefore, we can derive Γ ⊢ 𝑠𝑇
𝑆
𝑠 using (STGP-Syn-Var)

and Δ ⊢ 𝑠 −→ 𝑝 using (STGP-Eval-Var). Conversely, suppose there

is an expression 𝑒 for which we can derive Γ ⊢ 𝑆𝑇
𝑆

𝑒 and

Δ ⊢ 𝑒 −→ 𝑝 . A derivation for Δ ⊢ 𝑒 −→ 𝑝 can only use rules

(STGP-Eval-Var) and (STGP-Eval-Beta). The second of these rules

creates an expression having 𝑝 as a subexpression; however, the

only axioms (in our evaluation context) containing the 𝐿𝑒𝑎𝑓 con-

structor are of the form 𝑢 ↦→ 𝐿𝑒𝑎𝑓 (𝑢) with 𝑢 a terminal symbol.

Therefore, we conclude that 𝑒 = 𝑠 , so that we can derive Γ ⊢ 𝑆𝑇
𝑆
𝑠 .

This then implies that rule (STGP-Syn-Var) was used, and therefore

𝑇 = 𝑠𝑇 , so that 𝑆 = 𝑠 . We can thus conclude that (𝑉 , Σ, 𝑅, 𝑠) 𝐺
𝑝

thanks to rule (CFG-Leaf).

Next, suppose that 𝑝 = 𝐵𝑟𝑎𝑛𝑐ℎ(𝑋, 𝑝1, . . . , 𝑝𝑛) for some non-

terminal symbol 𝑋 and PTs 𝑝1, . . . , 𝑝𝑛 . If we can derive

(𝑉 , Σ, 𝑅, 𝑆) 𝐺
𝑝,

then we must have used the rule (CFG-Branch), which implies that

𝑆 = 𝑋 , that there exist symbols 𝑠1, . . . , 𝑠𝑛 with 𝑟 = (𝑋, 𝑠1, . . . , 𝑠𝑛) ∈
𝑅, and that (𝑉 , Σ, 𝑅, 𝑠𝑖 ) 𝐺

𝑝𝑖 for 𝑖 = 1, . . . , 𝑛. By induction hypoth-

esis there exist expressions 𝑒1, . . . , 𝑒𝑛 such that

Γ ⊢ 𝑠𝑖𝑇
𝑆
𝑒𝑖 and Δ ⊢ 𝑒𝑖 −→ 𝑝𝑖

Moreover, by construction we have an expression variable 𝑟 with

Γ ⊢ 𝑠1𝑇 → . . .→ 𝑠𝑛𝑇 → 𝑋𝑇
𝑆
𝑟 ;

Γ ⊢ 𝑟 −→ 𝜆𝑠1 : 𝑠1𝑇 . · · · 𝜆𝑠𝑛 : 𝑠𝑛𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑋, 𝑠1, · · · , 𝑠𝑛) .

Γ 𝑧 : 𝑍𝑇

𝑜 : 𝑂𝑇

𝑓 : 𝑓 𝑇

𝑛0 : 𝑍𝑇 → 𝑁𝑇

𝑛1 : 𝑂𝑇 → 𝑁𝑇

𝑛𝑝 : 𝑃𝑇 → 𝑁𝑇

𝑛𝑠 : 𝑆𝑧𝑇 → 𝑁𝑇

𝑝𝑙 : 𝑁𝑇 → 𝑁𝑇 → 𝑃𝑇

𝑠𝑧 : 𝑆𝑡𝑇 → 𝑆𝑧𝑇

𝑠𝑡 : 𝑓 𝑇 → 𝑆𝑡𝑇

Δ 𝑧 ↦→ 𝐿𝑒𝑎𝑓 (𝑍𝑒𝑟𝑜)
𝑜 ↦→ 𝐿𝑒𝑎𝑓 (𝑂𝑛𝑒)
𝑓 ↦→ 𝐿𝑒𝑎𝑓 (”𝑓 𝑜𝑜”)
𝑛0 ↦→ 𝜆𝑥 : 𝑍𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑁𝑢𝑚𝑏𝑒𝑟, 𝑥)
𝑛1 ↦→ 𝜆𝑥 : 𝑂𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑁𝑢𝑚𝑏𝑒𝑟, 𝑥)
𝑛𝑝 ↦→ 𝜆𝑥 : 𝑃𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑁𝑢𝑚𝑏𝑒𝑟, 𝑥)
𝑛𝑠 ↦→ 𝜆𝑥 : 𝑆𝑡𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑁𝑢𝑚𝑏𝑒𝑟, 𝑥)
𝑝𝑙 ↦→ 𝜆𝑥 : 𝑁𝑇 .𝜆𝑦 : 𝑁𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑃𝑙𝑢𝑠, 𝑥,𝑦)
𝑠𝑧 ↦→ 𝜆𝑥 : 𝑆𝑡𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑆𝑖𝑧𝑒𝑂 𝑓 , 𝑥)
𝑠𝑡 ↦→ 𝜆𝑥 : 𝑓 𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑥)

𝑇 𝑁𝑇

Table 2: Synthesis context corresponding to the context-free
grammar in Table 1.

By a successive application of the rules (STGP-Syn-App) as well

as (STGP-Eval-Beta), we then derive that Γ ⊢ 𝑋𝑇
𝑆
𝑟𝑠1 . . . 𝑠𝑛 and

Δ ⊢ 𝑟𝑠1 . . . 𝑠𝑛 −→ 𝑝 , respectively.

Conversely, suppose that there exists 𝑒 and derivations for

Γ ⊢ 𝑆𝑇
𝑆
𝑒 and Δ ⊢ 𝑒 −→ 𝑝.

Since the only axioms in Δ that contain the 𝐵𝑟𝑎𝑛𝑐ℎ constructor are

of the form 𝑟 ↦→ 𝜆𝑦1 : 𝑦1𝑇 . · · · 𝜆𝑦𝑚 : 𝑦𝑚𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑋,𝑦1, · · · , 𝑦𝑚),
we conclude that our derivation for Δ ⊢ 𝑒 −→ 𝑝 must have used 𝑛

applications of the rule (STGP-Eval-Beta), ending with the axiom

corresponding to some production rule 𝑟 . Let 𝑒1, . . . , 𝑒𝑛 be the in-

termediate expressions appearing in this derivation, so that in the

root of our derivation tree we have 𝑒 = 𝑟𝑒1 · · · 𝑒𝑛 and moreover

we have Δ ⊢ 𝑒𝑖 −→ 𝑝𝑖 for 𝑖 = 1, . . . , 𝑛. We must have then that

Γ ⊢ 𝑆𝑇
𝑆
𝑟𝑒1 · · · 𝑒𝑛 . Thus, since 𝑟 : 𝑦1𝑇 → · · · → 𝑦𝑛𝑇 → 𝑋𝑡 is the

only instance of 𝑟 in Γ, we conclude that𝑋 = 𝑆 and Γ ⊢ 𝑦𝑖𝑇
𝑆
𝑒𝑖 . By

induction hypothesis, we determine that (𝑉 , Σ, 𝑅,𝑦𝑖 ) 𝐺
𝑝𝑖 . Then,

applying rule (CFG-Branch), we conclude that (𝑉 , Σ, 𝑅, 𝑋 ) 𝐺
𝑝 , as

desired. □

To illustrate the above construction, consider the context-free

grammar in Table 1 for operations between strings and numbers.

A possible tree synthesized by this grammar, corresponding to the

program 0 + SizeOf("foo"), is the tree

p = Branch(Number, Branch(Plus,
Branch(Number, Leaf(Zero)),

Branch(Number, Branch(SizeOf,
Branch(String, Leaf("foo"))))))

Applying the construction of Theorem 5.1, we get the equivalent

synthesis context in Table 2.
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Let 𝑒 be the expression np (pl (n0 z)(ns (sz (st f)))).

It is straightforward to check that Γ ⊢ 𝑁𝑇 𝑆
𝑒 . The following is a

proof for Δ ⊢ 𝑒 −→ 𝑝 .

1. Δ ⊢ 𝑓 −→ 𝐿𝑒𝑎𝑓 (𝑓 𝑜𝑜) (Var)

2. Δ ⊢ 𝑠𝑡 −→ 𝜆𝑥 : 𝑓 𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑥) (Var)

3. Δ ⊢ 𝑠𝑡 𝑓 −→ 𝐵𝑟𝑎𝑛𝑐ℎ(𝑆𝑡𝑟𝑖𝑛𝑔, 𝐿𝑒𝑎𝑓 (𝑓 𝑜𝑜)) (Beta 1,2)

4. Δ ⊢ 𝑠𝑧 −→ 𝜆𝑥 : 𝑆𝑡𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑆𝑖𝑧𝑒𝑂 𝑓 , 𝑥) (Var)

5. Δ ⊢ 𝑠𝑧 (𝑠𝑡 𝑓 ) −→ 𝐵𝑟𝑎𝑛𝑐ℎ(𝑆𝑖𝑧𝑒𝑂 𝑓 , 𝐵𝑟𝑎𝑛𝑐ℎ(𝑆𝑡𝑟𝑖𝑛𝑔, 𝐿𝑒𝑎𝑓 (𝑓 𝑜𝑜)))
(Beta 3,4)

6. Δ ⊢ 𝑛𝑠 −→ 𝜆𝑥 : 𝑆𝑧𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑁𝑢𝑚𝑏𝑒𝑟, 𝑥) (Var)

7. Δ ⊢ 𝑛𝑠 (𝑠𝑧 (𝑠𝑡 𝑓 )) −→ 𝐵𝑟𝑎𝑛𝑐ℎ(𝑁𝑢𝑚𝑏𝑒𝑟, · · · ) (Beta 5,6)

8. Δ ⊢ 𝑧 −→ 𝐿𝑒𝑎𝑓 (𝑍𝑒𝑟𝑜) (Var)

9. Δ ⊢ 𝑛0 −→ 𝜆𝑥 : 𝑍𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑁𝑢𝑚𝑏𝑒𝑟, 𝑥) (Var)

10. Δ ⊢ 𝑛0 𝑧 −→ 𝐵𝑟𝑎𝑛𝑐ℎ(𝑁𝑢𝑚𝑏𝑒𝑟, 𝐿𝑒𝑎𝑓 (𝑍𝑒𝑟𝑜)) (Beta 8,9)

11. Δ ⊢ 𝑝𝑙 −→ 𝜆𝑥 : 𝑁𝑇 .𝜆𝑦 : 𝑁𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑃𝑙𝑢𝑠, 𝑥,𝑦) (Var)

12. Δ ⊢ (𝑝𝑙 (𝑛0 𝑧) (𝑛𝑠 (𝑠𝑧 (𝑠𝑡 𝑓 ))) −→ 𝐵𝑟𝑎𝑛𝑐ℎ(𝑃𝑙𝑢𝑠, · · · )
(Beta 7,10,11)

13. Δ ⊢ 𝑛𝑝 −→ 𝜆𝑥 : 𝑃𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑁𝑢𝑚𝑏𝑒𝑟, 𝑥) (Var)

14. Δ ⊢ 𝑛𝑝 (𝑝𝑙 (𝑛0 𝑧) (𝑛𝑠 (𝑠𝑧 (𝑠𝑡 𝑓 )))) −→ 𝐵𝑟𝑎𝑛𝑐ℎ(𝑁𝑢𝑚𝑏𝑒𝑟, · · · )
(Beta 12,13)

To conclude this section, we provide an example of a synthe-

sis context that cannot be described using context-free grammars.

Therefore, the reverse of Theorem 5.1 does not hold.

Γ 𝑧 : 𝑧𝑇

𝑛0 : 𝑧𝑇 → 𝑛𝑇

𝑛𝑠 : 𝑠𝑇 → 𝑛𝑇

𝑠0 : 𝑧𝑇 → 𝑠𝑇

𝑠𝑠 : 𝑠𝑇 → 𝑠𝑇

𝑝 : 𝑛𝑇 → 𝑝𝑇

Δ 𝑧 ↦→ 𝐿𝑒𝑎𝑓 (𝑍𝑒𝑟𝑜)
𝑛0 ↦→ 𝜆𝑥 : 𝑧𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑁𝑢𝑚𝑏𝑒𝑟, 𝑥)
𝑛𝑠 ↦→ 𝜆𝑥 : 𝑠𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑁𝑢𝑚𝑏𝑒𝑟, 𝑥)
𝑠0 ↦→ 𝜆𝑥 : 𝑧𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑆𝑢𝑐𝑐, 𝑥)
𝑠𝑠 ↦→ 𝜆𝑥 : 𝑠𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑆𝑢𝑐𝑐, 𝑥)
𝑝 ↦→ 𝜆𝑥 : 𝑛𝑇 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑃𝑎𝑖𝑟, 𝑥, 𝑥)

𝑇 𝑝𝑇

Table 3: Example of a synthesis context to represent pairs of
the same number.

Consider the synthesis context in Table 3 to represent pairs of

the same number. For a natural number 𝑛, let ⌊𝑛⌋ be a shorthand
notation for the AST

⌊0⌋ = 𝐵𝑟𝑎𝑛𝑐ℎ(𝑁𝑢𝑚𝑏𝑒𝑟, 𝐿𝑒𝑎𝑓 (𝑍𝑒𝑟𝑜))
⌊1⌋ = 𝐵𝑟𝑎𝑛𝑐ℎ(𝑁𝑢𝑚𝑏𝑒𝑟, 𝐵𝑟𝑎𝑛𝑐ℎ(𝑆𝑢𝑐𝑐, 𝐿𝑒𝑎𝑓 (𝑍𝑒𝑟𝑜)))
⌊𝑛⌋ = 𝐵𝑟𝑎𝑛𝑐ℎ(𝑁𝑢𝑚𝑏𝑒𝑟,

𝐵𝑟𝑎𝑛𝑐ℎ(𝑆𝑢𝑐𝑐, · · ·𝐵𝑟𝑎𝑛𝑐ℎ(𝑆𝑢𝑐𝑐,︸                                  ︷︷                                  ︸
𝑛 times

𝐿𝑒𝑎𝑓 (𝑍𝑒𝑟𝑜)) · · · ))
(1)

One can easily check that a program tree 𝑝 satisfies Γ,Δ ⊢ 𝑛𝑇 𝑆𝐸
𝑝

if and only if 𝑝 = ⌊𝑛⌋ for some natural number 𝑛. In the same

way, we can check that the only program trees 𝑝 of type 𝑝𝑇 syn-

thesizable by the above typed calculus must be of the form 𝑝 =

𝐵𝑟𝑎𝑛𝑐ℎ(𝑃𝑎𝑖𝑟, ⌊𝑛⌋, ⌊𝑛⌋). However, we cannot build a GGGP that

only synthesizes such program trees. Any attempt of doing so

would result in a GGGP that also synthesizes program trees 𝑝 =

𝐵𝑟𝑎𝑛𝑐ℎ(𝑃𝑎𝑖𝑟, ⌊𝑛⌋, ⌊𝑚⌋) for 𝑛 ≠𝑚.

6 FORMALIZING ATTRIBUTE GRAMMAR
EVOLUTION

Attribute grammar evolution (AGE) [4] extends Grammar Evolution

with Attribute Grammars, allowing the search to be constrained

not only by the syntax of programs, but also their semantics.

Attribute grammars [16] are an extension to context-free gram-

mars that enhances them with two set of attributes: synthesized

(obtained from child nodes) and inherited (obtained from parents

and siblings).

A context-free grammar can be extended into an attribute gram-

mar [14, 16] by introducing:

• for each non-terminal 𝑋 ∈ 𝑉 , a set of inherited attributes for 𝑋

(𝐼𝑁𝐻𝑋 );

• for each non-terminal 𝑋 ∈ 𝑉 , a set of synthesized attributes for

𝑋 (𝑆𝑌𝑁𝑋 );

• a semantics mapping 𝑓 bound to syntactic rules and attributes.

Terminals: 𝑖 , arr, name

Non-terminals: stmt, expr

Rules: expr→ arr [ i ] {

expr.valid← 0 ≤ 𝑖 ∧ 𝑖 < 𝑎𝑟𝑟 .𝑠𝑖𝑧𝑒

arr.asizes← expr.asizes

i.asizes← expr.asizes

}

stmt0→ name := new int[i]; stmt1 {

stmt1.asizes[name]← n

stmt0.valid← stmt1.valid

}

...

Starting Symbol: stmt

Table 4: An attribute grammar example for restricting the
array indices to valid values for each array.

We assume that inherited and synthesized attributes are disjoint;

moreover, every attribute 𝑎 has an associated range of values𝑇𝑎 (the

type T of 𝑎). Table 4 shows an example of an excerpt of an attribute

grammar that guarantees that array accesses are always valid, with

attributes that are synthesized (𝑒𝑥𝑝𝑟 .𝑣𝑎𝑙𝑖𝑑 ← 0 ≤ 𝑖 ∧ 𝑖 < 𝑎𝑟𝑟 .𝑠𝑖𝑧𝑒)

and others that are inherited (𝑖 .𝑎𝑠𝑖𝑧𝑒𝑠 ← 𝑒𝑥𝑝𝑟 .𝑎𝑠𝑖𝑧𝑒𝑠).

The key element of attribute grammars is the semantics 𝑓 . If 𝑟

is a production rule of the form 𝑋0 −→ 𝑋1 · · ·𝑋𝑛 , then semantics

are defined for every 𝑎0 ∈ 𝑆𝑌𝑁𝑋0
(denoted by the function 𝑓(𝑟,0,𝑎0 )

and for every 𝑎𝑖 ∈ 𝐼𝑁𝐻𝑋𝑖
with 1 ≤ 𝑖 ≤ 𝑛 (denoted by the function

𝑓(𝑟,𝑖,𝑎𝑖 ) ).
AGE makes use of attributes to describe the conditions that a

phenotype must comply with to be considered semantically valid.

The derivation process is cancelled when one of these constraints

is violated. To formalize this, we assume that there is at least one
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𝑠 ∈ Σ

(𝑉 , Σ, 𝑅, 𝑠, 𝑓 ) 𝐴𝐺
𝐿𝑒𝑎𝑓 (𝑠) []

(AGE-Leaf)

𝑟 = (𝑆, 𝑠𝑖 ) ∈ 𝑅
𝑓(𝑟,0,valid)

(𝑉 , Σ, 𝑅, 𝑠𝑖 , 𝑓 ) 𝐴𝐺
𝑝𝑖 [𝑎 := 𝑓(𝑟,𝑖,𝑎)

0< 𝑗<𝑖
𝑎∈𝐼𝑁𝐻𝑠𝑖

]
𝑖

(𝑉 , Σ, 𝑅, 𝑆, 𝑓 ) 𝐴𝐺
𝐵𝑟𝑎𝑛𝑐ℎ(𝑆, 𝑝𝑖 ) [𝑎 := 𝑓(𝑟,0,𝑎)

𝑎∈𝑆𝑌𝑁𝑆 ]
(AGE-Branch)

Figure 6: The Synthesis Rules of AGE.
synthesized attribute, which we denote by the name valid, such that

valid ∈ 𝑆𝑌𝑁𝑋 for every non-terminal 𝑋 , and 𝑇
valid

= {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}.
We formalize an attribute grammar as a tuple (𝑉 , Σ, 𝑅, 𝑆, 𝑓 )where

(𝑉 , Σ, 𝑅, 𝑆) is the underlying CFG. We omit 𝑆𝑌𝑁𝑋 , 𝐼𝑁𝐻𝑋 from the

definition of the tuple for ease of exposition. AGE synthesis is

denoted as (𝑉 , Σ, 𝑅, 𝑆, 𝑓 ) 𝐴𝐺
𝑝 [𝑎1 := 𝑣1, . . . 𝑎𝑛 := 𝑣𝑛], where 𝑣𝑖 is

the value of attribute 𝑎𝑖 and we present the inference rules in

Figure 6. We also use the notation (𝑉 , Σ, 𝑅, 𝑆, 𝑓 ) 𝐴𝐺
𝑝 [·] to mean

that (𝑉 , Σ, 𝑅, 𝑆, 𝑓 ) synthesizes 𝑝 for some choice of attribute values.

As described in Section 2.2 of Cruz et al. [4], we consider only

L-attribute grammars, those whose inherited attributes only depend

on the parent and left-nodes. This limitation occurs for efficiency

as L-attribute Grammars can be parsed in one transversal. This

limitation of the synthesis is translated in the AGE-Branch iteration

of 𝑗 that has to be smaller than 𝑖 , the current production item to be

expanded.

7 COMPARING GGGP WITH AGE
Theorem 7.1. For every context-free grammar (𝑉 , Σ, 𝑅, 𝑆), there

exists an attribute grammar (𝑉 , Σ, 𝑅, 𝑆, 𝑓 ) such that, for every AST 𝑝 ,

(𝑉 , Σ, 𝑅, 𝑆) 𝐺
𝑝 if and only if (𝑉 , Σ, 𝑅, 𝑆, 𝑓 ) 𝐴𝐺

𝑝 [·] .

Proof. We can trivially convert a context-free grammar (𝑉 , Σ, 𝑅, 𝑆)
into an attribute grammar (𝑉 , Σ, 𝑅, 𝑆, 𝑓 ) by adding the attribute

valid ∈ 𝑆𝑌𝑁𝑋 , for every non-terminal𝑋 , and defining 𝑓 (𝑟, 0, valid) =
𝑡𝑟𝑢𝑒 everywhere. □

Conversely, we can show that AGE has more expressive power

than GGGP, so that the converse of Theorem 7.1 does not hold. The

attribute grammar in Table 5 can be used to represent pairs of the

same number, and thus coincides with the counter-example from

the end of the previous section.

In this example, any AST derived from symbol Number must be

of the form ⌊𝑛⌋ for some natural number 𝑛, according to the en-

coding in (1); moreover, the corresponding attribute value equals

𝑛. Looking at the definition for the attribute valid in the produc-

tion rule for Pair, we can see that the only allowed pairs are for

numbers of the same value, i.e. 𝐵𝑟𝑎𝑛𝑐ℎ(𝑃𝑎𝑖𝑟, ⌊𝑛⌋, ⌊𝑚⌋) with 𝑛 =𝑚.

8 COMPARING STGP WITH AGE
In this section, we compare the STGP and AGE models. Our first

example shows that some STGP cannot be expressed as AGE, but

only because of a very trivial restriction. Consider the following

synthesis context.

Terminals: Zero

Non-terminals: Number, Pair, Succ

Attributes: valid in SYN_Number, T_valid = Bool

valid in SYN_Succ, T_valid = Bool

valid in SYN_Pair, T_valid = Bool

value in SYN_Number, T_value = Nat

value in SYN_Succ, T_value = Nat

Rules: Number→ Zero {

Number.valid← true

Number.value← 0

}

Number→ Succ {

Number.valid← Succ.valid

Number.value← Succ.value

}

Succ→ Zero {

Number.valid← true

Number.value← 1

}

Succ0→ Succ1 {

Succ0.valid← true

Succ0.value← Succ1.value + 1

}

Pair→ Number1 Number2 {

Pair.valid←
(Number1.value = Number2.value)

}

Starting Sym-

bol:

Pair

Table 5: An Attribute Grammar example for Pairs.

Γ 𝑒1 : 𝑦𝑇

𝑒2 : 𝑦𝑇

Δ 𝑒1 ↦→ 𝐵𝑟𝑎𝑛𝑐ℎ(𝑌𝑒𝑠, 𝐿𝑒𝑎𝑓 (𝑍𝑒𝑟𝑜))
𝑒2 ↦→ 𝐵𝑟𝑎𝑛𝑐ℎ(𝑁𝑜, 𝐿𝑒𝑎𝑓 (𝑍𝑒𝑟𝑜))

𝑇 𝑦𝑇

Table 6: Example of a synthesis context (Typing context Γ,
evaluation context Δ and target type 𝑇 ) for a simple STGP
synthesis that cannot be expressed with AGE.

We can trivially check that the only ASTs synthesizable by this

calculus are

Γ,Δ ⊢ 𝑦𝑇 𝑆𝐸
𝐵𝑟𝑎𝑛𝑐ℎ(𝑌𝑒𝑠, 𝐿𝑒𝑎𝑓 (𝑍𝑒𝑟𝑜))

Γ,Δ ⊢ 𝑦𝑇 𝑆𝐸
𝐵𝑟𝑎𝑛𝑐ℎ(𝑁𝑜, 𝐿𝑒𝑎𝑓 (𝑍𝑒𝑟𝑜))

However, context-free grammars can only synthesize trees with

the same top-most constructor; in other words, if 𝑔
𝐺

𝑝 and

𝑔
𝐺

𝑝′, then either 𝑝 , 𝑝′ are both of the form 𝐿𝑒𝑎𝑓 (𝑠) for the
same terminal symbol 𝑠 , or they are both of the form 𝐵𝑟𝑎𝑛𝑐ℎ(𝑆, . . .)
for the same non-terminal symbol 𝑆 . This observation carries over

to attribute grammars, so that no AGE could be equivalent to the

typed calculus above.

To circumvent this obstacle, we introduce an additional fresh

non-terminal symbol 𝑆 and change our interpretation of equiva-

lence accordingly. Instead of (𝑉 , Σ, 𝑅, 𝑆, 𝑓 ) 𝐴𝐺
𝑝 [·], we consider
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(𝑉 , Σ, 𝑅, 𝑆, 𝑓 ) 𝐴𝐺
𝐵𝑟𝑎𝑛𝑐ℎ(𝑆, 𝑝) [·], i.e. we add a branch (with non-

terminal 𝑆) above the root of 𝑝 . The main theorem of this section is

as follows.

Theorem 8.1. For any synthesis context (Γ,Δ,𝑇 ), there exists an
attribute grammar (𝑉 , Σ, 𝑅, 𝑆, 𝑓 ) such that, for every program tree 𝑝 ,

Γ,Δ ⊢ 𝑇 𝑆𝐸
𝑝 if and only if (𝑉 , Σ, 𝑅, 𝑆, 𝑓 ) 𝐴𝐺

𝐵𝑟𝑎𝑛𝑐ℎ(𝑆, 𝑝) [·] .
In order to prove this theorem, we make use of the following

result showing that type-checking is decidable for our typed lambda

calculus.

Lemma 8.2. Given a synthesis context (Γ,Δ,𝑇 ) and a program tree

𝑝 , one can decide in polynomial time whether Γ,Δ ⊢ 𝑇 𝑆𝐸
𝑝 .

Proof. Our algorithm will try to construct an expression 𝑒 ,

while looking for a proof for Γ ⊢ 𝑇
𝑆

𝑒 and Δ ⊢ 𝑒 −→ 𝑝;

moreover, it will work recursively on the structure of 𝑝 . Since

any proof for Δ ⊢ 𝑒 −→ 𝑝 can only use rules (STGP-Eval-Var)

and (STGP-Eval-Beta), the expression 𝑒 can only be built using

expression variables or applications. Let us consider the leftmost

application in 𝑒; in other words, let us write

𝑒 = 𝑒0 𝑒1 · · · 𝑒𝑚,

where 𝑒0 is an expression variable and 𝑒1, . . . , 𝑒𝑚 are expressions.

Then 𝑒0 must appear as an axiom on both Γ and Δ. By separating

the initial segment of abstractions in the axiom in Δ, we can write

this axiom in the form

Δ ⊢ 𝑒0 −→ 𝜆𝑥1 : 𝑇1 · · · 𝜆𝑥𝑛 : 𝑇𝑛 .𝑒
′
0
,

where 𝑒′
0
is not an abstraction; i.e. it is either a variable 𝑥 , an appli-

cation 𝑒′
1
𝑒′
2
, a leaf construct 𝐿𝑒𝑎𝑓 (𝑠) for some symbol 𝑠 , or a branch

construct 𝐵𝑟𝑎𝑛𝑐ℎ(𝑋, 𝑒′) for some sequence of expressions 𝑒′. In ad-

dition, we must have 𝑛 ≤ 𝑚, otherwise we could not apply the rule

(STGP-Eval-Beta) enough times to get rid of all the abstractions.

The main idea of our algorithm is that, without loss, 𝑒′
0
is either a

leaf or a branching; if not, we would have an alternative expression

𝑒 and alternative proofs for Γ ⊢ 𝑇 𝑆
𝑒 , Δ ⊢ 𝑒 −→ 𝑝 where this is

indeed the case. We consider each of the possible cases for 𝑒′
0
.

• Suppose Δ ⊢ 𝑒0 −→ 𝜆𝑥1 : 𝑇1 · · · 𝜆𝑥𝑛 : 𝑇𝑛 .𝑥𝑖 , for some 1 ≤ 𝑖 ≤ 𝑛.

Then 𝑒0 𝑒1 · · · 𝑒𝑚 would Beta-reduce to 𝑒 = 𝑒𝑖 𝑒𝑛+1 · · · 𝑒𝑚 and

we could have used expression 𝑒 instead of 𝑒 in our proof of

Γ,Δ ⊢ 𝑇 𝑆𝐸
𝑝 .

• Suppose Δ ⊢ 𝑒0 −→ 𝜆𝑥1 : 𝑇1 · · · 𝜆𝑥𝑛 : 𝑇𝑛 .𝑥 , for some variable 𝑥

different from any 𝑥𝑖 . Then 𝑒0 𝑒1 · · · 𝑒𝑚 would Beta-reduce to

𝑒 = 𝑥 𝑒𝑛+1 · · · 𝑒𝑚 . In order for Δ ⊢ 𝑒 −→ 𝑝 to hold, 𝑥 must

have been part of our contexts; moreover, we could have used

expression 𝑒 instead of 𝑒 in our proof of Γ,Δ ⊢ 𝑇 𝑆𝐸
𝑝 .

• Suppose Δ ⊢ 𝑒0 −→ 𝜆𝑥1 : 𝑇1 · · · 𝜆𝑥𝑛 : 𝑇𝑛 .𝑒
′
1
𝑒′
2
, for some expres-

sions 𝑒′
1
and 𝑒′

2
. Then 𝑒0 𝑒1 · · · 𝑒𝑚 would Beta-reduce to 𝑒 =

𝑒′
1
[𝑥𝑖 ↦→ 𝑒𝑖 ] 𝑒′

2
[𝑥𝑖 ↦→ 𝑒𝑖 ] 𝑒𝑛+1 · · · 𝑒𝑚 and we could have used ex-

pression 𝑒 instead of 𝑒 in our proof of Γ,Δ ⊢ 𝑇 𝑆𝐸
𝑝 .

Thus, in our algorithm that checks whether Γ,Δ ⊢ 𝑇 𝑆𝐸
𝑝 , we

can begin by looking at all expression variables 𝑒0 for which the

corresponding 𝑒′
0
is either a leaf or a branch construct. Note that

this constructor must correspond to the top-most constructor of 𝑝 .

Next, we handle these two cases separately.

• Suppose 𝑝 = 𝐿𝑒𝑎𝑓 (𝑠) for some terminal symbol 𝑠; then, our

algorithm looks in the evaluation context for an axiom of the form

Δ ⊢ 𝑒0 −→ 𝜆𝑥1 : 𝑇1 · · · 𝜆𝑥𝑛 : 𝑇𝑛 .𝐿𝑒𝑎𝑓 (𝑠). For any such axiom,

we need to check: whether there exist expressions 𝑒𝑖 for which

Γ ⊢ 𝑇𝑖 𝑆
𝑒𝑖 , which amounts to proving 𝑇𝑖 in a suitable fragment

of intuitionistic logic; and whether 𝑒0 : 𝑇1 → · · ·𝑇𝑛 → 𝑇 is in

the typing context Γ. Both of these properties can be checked

efficiently, and if they hold, then as desired Δ ⊢ 𝑒0 𝑒1 · · · 𝑒𝑛 −→
𝐿𝑒𝑎𝑓 (𝑠), so that Γ,Δ ⊢ 𝑇 𝑆𝐸

𝑝 .

• Suppose 𝑝 = 𝐵𝑟𝑎𝑛𝑐ℎ(𝑋, 𝑝1, · · · , 𝑝𝑛) for some non-terminal sym-

bol 𝑋 and PTs 𝑝1, · · · , 𝑝𝑛 ; then, our algorithm looks in the evalu-

ation context for an axiom of the form

Δ ⊢ 𝑒0 −→ 𝜆𝑥1 : 𝑇1 · · · 𝜆𝑥𝑛 : 𝑇𝑛 .𝐵𝑟𝑎𝑛𝑐ℎ(𝑋, 𝑒′
1
, . . . , 𝑒′

𝑘
), for some

non-terminal symbol 𝑋 and expressions 𝑒′
1
, . . . , 𝑒′

𝑘
. These expres-

sions can be built using variables 𝑥1, . . . , 𝑥𝑘 and using the 𝐿𝑒𝑎𝑓

and 𝐵𝑟𝑎𝑛𝑐ℎ constructors; in particular, they cannot use applica-

tions or abstractions, as there is no rule in the STGP evaluation

calculus for reducing under a branch construct. Thus, we can

write 𝐵𝑟𝑎𝑛𝑐ℎ(𝑋, 𝑒′
1
, . . . , 𝑒′

𝑘
) as a ‘virtual’ PT where we addition-

ally have variables 𝑥1, . . . 𝑥𝑛 standing for variables.

Our algorithm then performs the following steps. First, it checks

whether the program tree 𝑝 matches the structure of

𝐵𝑟𝑎𝑛𝑐ℎ(𝑋, 𝑒′
1
, . . . , 𝑒′

𝑘
), while establishing a correspondence be-

tween the occurring variables 𝑥𝑖 and subtrees of 𝑝 ; in particular, if

the same variable 𝑥𝑖 appears in two different places, then the cor-

responding subtrees of 𝑝 must coincide. Second, for any variable

𝑥𝑖 not occurring in𝐵𝑟𝑎𝑛𝑐ℎ(𝑋, 𝑒′
1
, . . . , 𝑒′

𝑘
), we checkwhether there

exists an expression 𝑒𝑖 such that Γ ⊢ 𝑇𝑖 𝑆
𝑒𝑖 (which amounts to

proving 𝑇𝑖 in a suitable fragment of intuitionistic logic). Third,

for any variable 𝑥𝑖 which does occur in 𝐵𝑟𝑎𝑛𝑐ℎ(𝑋, 𝑒1, . . . , 𝑒𝑘 ), let
𝑝𝑖 be the corresponding subtree of 𝑝 . Then, we recursively apply

our algorithm to check whether Γ,Δ ⊢ 𝑇𝑖 𝑆𝐸
𝑝𝑖 . If the algorithm

succeeds, it also produces a suitable expression 𝑒𝑖 for which

Δ ⊢ 𝑒𝑖 −→ 𝑝𝑖 . Then, as desired, we have Δ ⊢ 𝑒0 𝑒1 · · · 𝑒𝑛 −→ 𝑝

and Γ ⊢ 𝑇 𝑆
𝑒0 𝑒1 · · · 𝑒𝑛 , so that Γ,Δ ⊢ 𝑇 𝑆𝐸

𝑝 .

We now argue that the above procedure can be implemented in

polynomial time. Checking whether a type 𝑇 can be proven in an

implicational fragment of intuitionistic logic can be done efficiently,

and this can be done in a preprocessing stage for each𝑇𝑖 appearing

in each expression 𝑒 = 𝜆𝑥1 : 𝑇1 · · · 𝜆𝑥𝑛 : 𝑇𝑛 .𝑒
′
occuring in Δ where

𝑒′ is either a leaf or a branch (polynomially many choices). Each of

the recursive calls boils down to matching a subtree 𝑝′ of 𝑝 against

an expression 𝑒 = 𝜆𝑥1 : 𝑇1 · · · 𝜆𝑥𝑛 : 𝑇𝑛 .𝑒
′
in Δ, where 𝑒′ is either

a leaf or a branch. In a dynamic programming fashion, we can

store all such pairs (there are linearly many subtrees and linearly

many such expressions, so there are quadratically many pairs). To

determine if a pair (𝑒, 𝑝′) is valid, we must match the structure of

𝑒′ against the structure of 𝑝′ (which amounts to traversing 𝑒′ and

𝑝′ in parallel), check Γ ⊢ 𝑇𝑖 𝑆
𝑒′
𝑖
for 𝑥𝑖 not occuring in 𝑒′ (which

can be done via a lookup on the result of the preprocessing stage),

and check Γ,Δ ⊢ 𝑇𝑖 𝑆𝐸
𝑝′
𝑖
for 𝑥𝑖 occuring in 𝑒′ (which amounts

to checking pairs (𝑒′
𝑖
, 𝑝′

𝑖
) for 𝑝′

𝑖
which is a subtree of 𝑝′). Each of

these checks takes linear time, thus yielding a cubic running time

in total. □
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Proof of Theorem 8.1. Given a synthesis context (Γ,Δ,𝑇 ), we
define an attribute grammar (𝑉 , Σ, 𝑅, 𝑆, 𝑓 ) as follows. We use as

terminal symbols all those symbols 𝑠 for which 𝐿𝑒𝑎𝑓 (𝑠) appears
in any subexpression of any axiom of Δ. We use as non-terminal

symbols all those symbols 𝑋 for which 𝐵𝑟𝑎𝑛𝑐ℎ(𝑋, . . .) appears in
any subexpression of any axiom of Δ. Additionally, we include a
fresh symbol 𝑆 . Any non-terminal symbol 𝑋 different from 𝑆 has

two synthesized attributes: a boolean attribute 𝑋 .valid which is

always defined as 𝑡𝑟𝑢𝑒 , and a string attribute 𝑋 .tree. Intuitively,

this second attribute will encode the entire subtree starting with 𝑋 .

Furthermore, the starting symbol 𝑆 will have a boolean attribute

𝑆.valid.

Finally, we need to describe the ruleset 𝑅 and the semantics

𝑓 . Suppose 𝐵𝑟𝑎𝑛𝑐ℎ(𝑋, 𝑒1, . . . , 𝑒𝑛) appears as a subexpression of

some axiom of Δ. Then, we include a rule 𝑋 → 𝑋1 · · ·𝑋𝑛 , where
𝑋1, . . . , 𝑋𝑛 range over all possible terminal and non-terminal sym-

bols other than 𝑆 . Furthermore, we define the synthesized attribute

𝑋 .tree as (here, + denotes string concatenation)

𝑋 .tree = “𝐵𝑟𝑎𝑛𝑐ℎ(𝑋, ” + 𝑠1 + “, ” + · · · + “, ” + 𝑠𝑛 + “)”
where 𝑠𝑖 is either the string 𝑋𝑖 .tree if 𝑋𝑖 is a non-terminal, or the

string “𝐿𝑒𝑎𝑓 (𝑋𝑖 )” if 𝑋𝑖 is a terminal symbol.

To conclude, we add a rule 𝑆 → 𝑠 for every terminal symbol

𝑠 , and define 𝑆.valid to be 𝑡𝑟𝑢𝑒 if Γ,Δ ⊢ 𝑇 𝑆𝐸
𝐿𝑒𝑎𝑓 (𝑠), and 𝑓 𝑎𝑙𝑠𝑒

otherwise. Similarly, we add a rule 𝑆 → 𝑋 for every non-terminal

symbol 𝑋 other than 𝑆 , and define 𝑆.valid to be 𝑡𝑟𝑢𝑒 if Γ,Δ ⊢ 𝑇 𝑆𝐸

𝑋 .tree, and 𝑓 𝑎𝑙𝑠𝑒 otherwise. Any of these are decidable predicates

due to Lemma 8.2.

In this way, the grammar (𝑉 , Σ, 𝑅, 𝑆) allows for arbitrary ASTs

built with the leaf and branch constructs. The role of the semantics

𝑓 is to filter, out of all the possible ASTs, precisely those which can

be derived from the typed calculus. By construction, we have that

Γ,Δ ⊢ 𝑇 𝑆𝐸
𝑝 if and only if (𝑉 , Σ, 𝑅, 𝑆, 𝑓 ) 𝐴𝐺

𝐵𝑟𝑎𝑛𝑐ℎ(𝑆, 𝑝) [·], as
we wanted to prove. □

To conclude this section, we argue that AGE have strictly more

expressive power than STGP. The main reason is that simply-typed

lambda calculus is known not to be Turing-complete (as opposed

to untyped lambda calculus), whereas in AGE we have no such

restrictions on the semantics 𝑓 . Let 𝑓 : N→ {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} be any
computable predicate on the natural numbers, and consider the

corresponding AG 𝑎𝑔𝑓 defined in Table 7.

If we ignore the semantics, then the underlying context-free

grammar generates exactly the natural numbers 𝑛 via the encoding

⌊𝑛⌋ as in (1). By introducing the predicate 𝑓 into the semantics, we

can only generate those natural numbers which satisfy 𝑓 . Since 𝑓

can be an arbitrary decidable predicate, we conclude that there are

choices of 𝑓 such that 𝑎𝑔𝑓 cannot be represented by any synthesis

context (Γ,Δ,𝑇 ); otherwise we would be able to represent 𝑓 in

simply-typed lambda calculus. For example, one could take 𝑓 to be

a predicate related to the Ackermann function.

9 RELATEDWORK
McKay et al. [21] stated that GGGP could be used to restrict types,

being equivalent in that usage to STGP, without further discussion

about the potential expressive power. Forstenlechner et al.[10] pre-

sented a GGGP approach to generalize the support for types in

Terminals: Zero

Non-terminals: Number, Succ

Attributes: valid in SYN_Number, T_valid = Bool

value in SYN_Succ, T_value = Nat

Rules: Number→ Zero {

Number.valid← 𝑓 (0)
}

Number→ Succ {

Number.valid← 𝑓 (Succ.value)
}

Succ→ Zero {

Succ.value← 1

}

Succ0→ Succ1 {

Succ0.value← Succ1.value + 1

}

Starting Symbol: Number

Table 7: The attribute grammar 𝑎𝑔𝑓 with predicates over nat-
ural numbers.

the grammar, showing that very simple types can be modeled as

context-free grammars.

Ephremidis et al. [7] discuss the complexity of attribute gram-

mars with regards to the complexity of the 𝑓 semantic function.

One relevant example is the fact that attribute grammars have been

developed to represent an interpreter and typechecker of supersets

of the STLC [6, 13].

Nicolau and Agapitos [24] have presented grammar design guide-

lines that are problem independent. A similar approach could be

taken for STGP, given they have the same expressive power (but

possible differences in performance). An automatic reduction tech-

nique has been proposed to replace a complex grammar with a

simpler (but equivalent) one automatically [23].

10 CONCLUSIONS
We have presented proof that STGP is more expressive than context-

free grammar GGGP, and that AGE is more expressive than both

approaches. The main advantage of STGP comes from the semantic

nature of the function application. As such, GGGP and STGP synthe-

sis are equivalent as long as the underlying programming language

has the same semantics, which is true in Turing-complete languages,

but not in other, also common, configuration languages. Addition-

ally, AGE is more powerful than both, allowing the constraint to

be Turing complete (as the target language can always be Turing

complete), thus restricting languages that have constraints on sib-

ling, child or parent nodes. The formalization presented also the

foundation for future formalisation of extensions to either method,

and the baselines to evaluate against. This can be used, for instance,

to compare Christiansen Grammatical Evolution [26] and Refined

Typed GP [9].

Finally, with STGP and GGGP having very similar expressive

power with target Turing-complete language, we recommend prac-

titioners use the more ergonomic version in their applications (e.g.,

[8]).
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