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∗This work has been partially supported by the Frenh National Researh Ageny projet EMC(ANR-09-BLAN-0164) and by the Lombardy Region projet NEDD.441

http://dx.doi.org/10.1142/S012905411440005X


July 11, 2014 8:55 WSPC/INSTRUCTION FILE S012905411440005X
442 L. Manzoni, D. Poças & A. E. Porreaset of reatants, neessary for the reation to take plae, a set of inhibitors, whosepresene bloks the reation from ourring, and a set of produts.Reation systems may be onsidered a qualitative model, as opposed to a quan-titative one, as we only fous on the presene or absene of hemial speies, and noton the preise amounts. In partiular, multiple reations having ommon reatantsdo not interfere; indeed, all reations that are enabled at a ertain time step hap-pen simultaneously. Another feature of reation systems whih di�erentiates themfrom other biologially inspired omputational models is the lak of permaneny:the state of the system only onsists of the produts of the reations that took plaein the last time step, without preserving the entities that were not involved in anyreation.Mathematially, a reation systems de�nes a transition funtion (the result fun-tion) between states, i.e., sets of entities (hemial speies), whih ompletely de-sribes the dynamis of the system. In many ases, the study of the properties ofreation systems involves the omparison of the result funtions of di�erent systemsor lasses of systems. A natural way to understand the modeling power of reationsystems is to onsider their behavior when the amount of resoures (reatants andinhibitors per reations) is limited. It was proved [3,7℄ that there exist in�nite properhierarhies of lasses of result funtions: by allowing more resoures, more funtionsbeome de�nable by reation systems. The idea of studying reation systems witha minimal number of resoures was also arried on in [2℄, where the properties andthe funtions de�ned by minimal reation systems were studied.While the analysis of result funtions is a diret way to ompare reation sys-tems, the lassi�ation it provides has a very high granularity. Requiring the equalityof the whole dynamis an be restritive for ertain appliations where we are inter-ested in a higher-level view of the behavior of the systems. As an analogy, onsidera simulation between Turing mahines: we are often not interested in a step-by-steporrespondene of on�gurations, and we allow the simulation to be slower than theoriginal mahine. In a similar fashion, in this paper we de�ne a notion of simulationin whih the simulating system is allowed to use several steps to simulate a singlestep of the other system; auxiliary entities (analogous to an alphabet extension)may also be involved in the simulation.The resulting equivalene relation of mutual simulability is oarser than equalityof result funtions, but still aptures the intuitive idea of �having the same behav-ior�. This relation indues exatly �ve equivalene lasses of reation systems. Inter-estingly, these lasses orrespond to well-de�ned properties of the result funtionsas funtions over �nite Boolean latties; indeed, they orrespond to the onstant,additive (join-semilattie endomorphisms), monotone, antitone, and the totality offuntions. These equivalene lasses are ordered linearly by the simulation preorder.We also give exat lower bounds to the number of steps required to perform thesimulations, and prove that auxiliary entities are, in general, neessary if we wantto preserve the �ve equivalene lasses.
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Simple Reation Systems and Their Classi�ation 443Di�erently from the original paper that introdued the notion of multi-step simu-lation for reation systems [6℄, this extended version provides in many ases a betteronstrution and proves in all ases the minimality of the resulting simulation andthe neessity of using additional entities, solving most of the problems originally leftopen. Furthermore, the haraterization of equivalene lasses in terms of funtions,whih was barely skethed in the original paper, is here expanded and ompleted.This paper is strutured as follows. In Se. 2 we reall the de�nitionsand notation related to reation systems. In Se. 3 we introdue the notionof k-simulation and prove that any reation system an be k-simulated by a systemin �normal form� using only one reatant and one inhibitor per reation. Then weturn our attention to limited variants of reation systems. In Se. 4 we onsiderreation systems using only inhibitors, haraterizing the antitone funtions; weprove that one inhibitor su�es to simulate them, and that they are weaker thanreation systems using both reatants and inhibitors. In Se. 5 we analyze rea-tion systems using only reatants, haraterizing the monotone funtions; we provethat two reatants su�e to simulate them (while single-reatant reation systemsare weaker and haraterize the additive funtions), and that they are weaker thaninhibitor-only reation systems. In Se. 6 we �nalize the lassi�ation by provingthat reation systems without reatants and inhibitors haraterize the onstantfuntions, and thus are the weakest variant. Setion 7 ontains our onlusions andsuggestion for further researh.2. Basi NotionsIn this paper we denote sets by upper-ase letters, reations and atomi elements bylower-ase letters, and reation systems and families of sets by alligraphi letters.Given a set X , we denote by 2X the power set of X . Reall that 2X is a Booleanlattie with respet to set inlusion, having ∪ and ∩ as join and meet operations.A reation is formally de�ned as follows.De�nition 1. Given a �nite set S (the bakground set), a reation over S is atriple of sets a = (Ra, Ia, Pa) ∈ 2S × 2S × 2S. We all Ra the set of reatants, Iathe set of inhibitors, and Pa the set of produts.Sine we will show that one reatant and one inhibitor su�e to simulate anyreation system (see Theorem 11), in this paper we also admit empty reatant andinhibitor sets, as in the original de�nition [5℄, in order to investigate the expressivityof the resulting reations and to prove that they are stritly weaker than reationsinvolving both kinds of resoures.De�nition 2. A reation system is a pair A = (S,A) where S is a �nite set and

A a set of reations over S.A state of a reation system A = (S,A) is any subset of S. The dynamis of areation systems are de�ned as follows.
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444 L. Manzoni, D. Poças & A. E. PorreaDe�nition 3. Let A = (S,A) be a reation system, a = (Ra, Ia, Pa) ∈ A, and
T ⊆ S. We say that a is enabled by T if and only if Ra ⊆ T and Ia ∩ T = ∅.The result of a on T is de�ned as

resa(T ) =

{

Pa if a is enabled by T

∅ otherwise.The result of A on T is de�ned as resA(T ) =
⋃

a∈A resa(T ).The state sequene of a reation system A with initial state T is given by su-essive iterations of the result funtion:
(

resnA(T )
)

n∈N
=

(

T, resA(T ), res
2
A(T ), . . .

)

.Sine the bakground set of a reation system is �nite, the state spae is also �nite;hene, every state sequene is ultimately periodi.3. Simulation Between Reation SystemsIn order to ompare reation systems with respet to their ability to generate statesequenes, we de�ne a notion of simulation less restritive than equality of resultfuntions: here, the simulating system may use several steps to simulate a singlestep of the original system. This is onsistent with notions of simulation employedfor many omputational models (e.g., Turing mahines), when we are not interestedin the strit orrespondene of every pair of on�gurations, but only in the overallbehavior of the two systems.De�nition 4 (k-simulation). Let A = (S,A) and A′ = (S′, A′), with S ⊆ S′, bereation systems, and let k ∈ N. We say that A′ k-simulates A if and only if, forall T ⊆ S and all n ∈ N, we have
resnA(T ) = resknA′ (T ) ∩ S.In other words, when onsidering the sequenes of states of A and A′ startingfrom T , the n-th state of A oinides with the (kn)-th state of A′ with respet tothe elements of S (some auxiliary elements of S′ − S may also our). We use thenotion of k-simulation to de�ne a relation on lasses of reation system.De�nition 5. Let X and Y be lasses of reation systems, and let k ∈ N. We de�nethe binary relation �k as follows: X �k Y if and only if for all A ∈ X there existsa reation system in Y that ℓ-simulates A for some ℓ ≤ k.We say that X � Y if and only if X �k Y for some k ∈ N. We write X ≈k Yif X �k Y and Y �k X, and X ≈ Y for X � Y ∧ Y � X. Finally, the notation

X ≺ Y is shorthand for X � Y ∧ Y 6� X.Notie that X ⊆ Y always implies X �1 Y , i.e., the set inlusion relationis oarser than k-simulation, sine any reation system is trivially 1-simulated byitself.
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Simple Reation Systems and Their Classi�ation 445A k-simulation and an ℓ-simulation an be omposed into a (kℓ)-simulation.Lemma 6. X �k Y and Y �ℓ Z implies X �kℓ Z.Proof. For all A = (S,A) ∈ X there exist B = (S′, A′) ∈ Y with S ⊆ S′ and h ≤ ksuh that

reshnB (T ) ∩ S = resnA(T )for all n ∈ N and T ⊆ S. Furthermore, there exist C = (S′′, A′′) ∈ Z and m ≤ ℓsuh that
resmn

C (T ) ∩ S′ = resnB(T )for all n ∈ N and T ⊆ S ⊆ S′. By ombining the previous statements and interset-ing with S, we get
(

resmhn
C (T ) ∩ S′

)

∩ S = resmhn
C (T ) ∩ S = reshnB (T ) ∩ S = resnA(T )for all T ⊆ S and n ∈ N. In other words, the reation system C (mh)-simulates A.Sine mh ≤ kℓ, we obtain X �kℓ Z.From this lemma, we immediately get the following result:Proposition 7. The relation � is a preorder. Hene, the relation ≈ is an equiva-lene relation.We lassify reation systems aording to the maximum amount of reatantsand inhibitors appearing in their reations.De�nition 8. For all r, i ∈ N, we denote by RS(r, i) the lass of reation systems

A = (S,A) suh that, for all (R, I, P ) ∈ A, we have |R| ≤ r and |I| ≤ i. Wealso de�ne the lasses RS(∞, i) =
⋃

r∈N
RS(r, i), RS(r,∞) =

⋃

i∈N
RS(r, i), and

RS(∞,∞) =
⋃

r,i∈N
RS(r, i).Notie that RS(∞,∞) is the lass of all reation systems. In this lassi�a-tion the maximum number of produts is not mentioned, beause every reationwith p produts an be replaed by p reations having a single produt [1℄.Proposition 9. For eah reation system A = (S,A) there exists a reation system

A′ = (S,A′) over the same bakground set having at most one produt per reationand suh that resA(T ) = resA′(T ) for all T ⊆ S.Every funtion over �nite power sets is the result funtion of a reation systemin RS(∞,∞), that is, with an unbounded number of reatants and inhibitors. Asimilar result was proved by Ehrenfeuht et al. [2℄.Proposition 10. Let f : 2S → 2S be a funtion with |S| = n. Then f = resA forsome A = (S,A) ∈ RS(n, n).
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446 L. Manzoni, D. Poças & A. E. PorreaProof. Let A = (S,A) ∈ RS(n, n) with the following reations:

(T, S − T, f(T )) for all T ⊆ S.Let T ⊆ S. Then, the only reation enabled by T is a = (T, S − T, f(T )), sinefor eah U 6= T we have either U ( T , or U * T and then (S − U) ∩ T 6= ∅.Hene resA(T ) = resa(T ) = f(T ) as required.However, reatants and inhibitors an be both redued to one with a 2-stepsimulation. This provides a minimal normal form for reation systems omputingarbitrary funtions.Theorem 11 (Normal form). RS(∞,∞) ≈2 RS(1, 1).Proof. By de�nition we have RS(1, 1) �1 RS(∞,∞), implying the weaker state-mentRS(1, 1) �2 RS(∞,∞). Thus, we only need to proveRS(∞,∞) �2 RS(1, 1).Let A = (S,A) ∈ RS(r, i). Let A′ = (S′, A′) be a reation system having
S′ = S ∪ A, that is, we enlarge the bakground set S with an element for eahreation in A (whih is represented by the reation itself). The set A′ ontains, foreah reation a = (Ra, Ia, Pa) ∈ A, the following reations:

(∅, {x}, {a}) for eah x ∈ Ra (1)
({y},∅, {a}) for eah y ∈ Ia (2)
(∅, {a}, Pa). (3)Hene A′ ∈ RS(1, 1). In order to prove that A′ 2-simulates A, it su�es to showthat, for all n ∈ N, if n is even, then

resnA′(T ) ∩ S = res
n/2
A (T ) (4)and if n is odd, then

resnA′(T ) ∩ A =
{

a : a is not enabled by res
(n−1)/2
A (T )

}

. (5)By indution on n: if n = 0, then (4) holds by de�nition.If n > 0 is odd, then by indution hypothesis we have
resn−1

A′ (T ) ∩ S = res
(n−1)/2
A (T ).Notie that the only reations produing elements of A are those in (1) and (2);furthermore, for every a ∈ A, the element a is produed if and only if there existssome x ∈ Ra suh that x /∈ resn−1

A′ (T ) or there exists some y ∈ Ia suh that
y ∈ resn−1

A′ (T ). Thus, by indution hypothesis, the element a ∈ S′ is produed in A′at time n if and only if the reation a ∈ A is not enabled in A at time n−1
2 . As aonsequene, statement (5) holds.If n > 0 is even, then by indution hypothesis we have

resn−1
A′ (T ) ∩ A =

{

a : a is not enabled by res
(n−2)/2
A (T )

}

.
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Simple Reation Systems and Their Classi�ation 447The only reations having elements of S as produts are those in (3): for every suhreation (∅, {a}, Pa), the set Pa is produed if and only if a /∈ resn−1

A′ (T ). Thus,for every reation a = (Ra, Ia, Pa) ∈ A, the orresponding reation (∅, {a}, Pa) isenabled in A′ at time n − 1 if and only if a is enabled in A at time n−2
2 . Hene,statement (4) holds, i.e., A′ 2-simulates A.The number of steps required by the simulation annot be redued to one; thisgenerally holds whenever we are reduing the amount of resoures of the reationsystem.Proposition 12. RS(r, i) �1 RS(r′, i′) whenever r′ + i′ < r + i.Proof. Let A = (S,A) ∈ RS(r, i) be a reation system with |S| = r + i and asingle reation a = (R, I, P ) with R ∪ I = S, R ∩ I = ∅, and P 6= ∅.Suppose A is 1-simulated by A′ = (S′, A′) ∈ RS(r′, i′) with r′+ i′ < r+ i. Then,there exists b = (R′, I ′, P ′) ∈ A′ with R′ ∩ I ′ = ∅ and P ′ ∩ S 6= ∅, otherwise wewould have

res1A′(R) ∩ S = ∅ 6= P = res1A(R).Sine |R′∪ I ′| = r′+ i′ < r+ i = |S|, there exists x ∈ S− (R′∪ I ′). If x ∈ R then R′enables b but not a:
res1A′(R′) ∩ S ⊇ resb(R

′) ∩ S = P ′ ∩ S 6= ∅ = res1A(R
′),while if x ∈ S −R = I then R′ ∪ {x} inhibits a but not b:

res1A′(R′ ∪ {x}) ∩ S ⊇ resb(R
′ ∪ {x}) ∩ S = P ′ ∩ S 6= ∅ = res1A(R

′ ∪ {x}).In both ases the value of res1A′ restrited to S di�ers from res1A in at least onepoint, ontraditing the fat that A′ 1-simulates A.Furthermore, inreasing the size of the bakground set by adding auxiliary en-tities is generally neessary.Proposition 13. There exist reation systems A = (S,A) with |S| ≥ 3 that annotbe k-simulated (for any k ∈ N) by reation systems A′ = (S,A′) ∈ RS(1, 1), i.e.,having the same bakground set.Proof. Let S be a �nite set with |S| = n ≥ 3, and let T1, T2, . . . , T2n be anenumeration of 2S . Let f : 2S → 2S be de�ned as
f(Ti) =

{

Ti+1 if i < 2n

T2n if i = 2n .By Proposition 10 we have f = resA for some A = (S,A) ∈ RS(n, n). We provethat no A′ = (S,A′) k-simulates A for any k > 1. Suppose otherwise; then A′generates the state sequene
(T1, res

1
A′(T1), res

2
A′(T1), . . . , res

k
A′(T1) = T2).
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448 L. Manzoni, D. Poças & A. E. PorreaNotie that T2 an be either part of a yle in A′, or outside any yle. In the�rst ase, the state T2 appears in�nitely often in the state sequene starting at T1,inluding at positions that are multiple of k and orrespond to the state sequeneofA starting at T1, while it should only appear one. In the seond ase, in partiularwe have resA′(T1) 6= T2, and resA′(T1) is also outside any yle (as it would imply T2in a yle). Hene, resA′(T1) will never appear again; but we have resA′(T1) = Tifor some i > 1, and a k-simulation requires resk(i−1)

A′ (T1) = resi−1
A (T1) = Ti. Hene,

A′ does not k-simulate A for any k > 1.Now we identify a subset of enumerations of 2S that are not the result funtionsof any A′ = (S,A′) ∈ RS(1, 1), thus proving that some of the reation systems Adesribed above annot be 1-simulated either. Let x, y, z ∈ S be distint elements,and �x f({x}) = S, f({x, y}) = ∅, and f(∅) = ∅ (i.e., T2n = ∅). Suppose A′

1-simulates A with f = resA. Sine S is the image of some state, for eah w ∈ Sthere exists a reation (R, I, P ) ∈ A′ with w ∈ P . Sine f(∅) = ∅, we musthave R 6= ∅. Sine f({x}) = S, one of these reations has R = {x}. But this requires
I = {y}, sine f({x, y}) = ∅. Hene, for eah w ∈ S we have a reation ({x}, {y}, P )with w ∈ P . As a onsequene resA′({x, z}) = S; but f({x, z}) 6= S sine S 6= T2nhas only one preimage.4. Reatantless Reation SystemsHaving established a minimum amount of resoures needed to simulate generalreation systems, we are interested in analyzing the behavior of weaker systems.Let us begin by onsidering reation systems without reatants and using onlyinhibitors. These an be simulated in 3 steps with only one inhibitor.Lemma 14. RS(0,∞) ≈3 RS(0, 1).Proof. Trivially, RS(0, 1) �3 RS(0,∞) holds.Let A = (S,A) ∈ RS(0,∞), and let A′ = (S′, A′) ∈ RS(0, 1) with bakgroundset S′ = S ∪ S̄ ∪ 2S , where S̄ = {x̄ : x ∈ S} is disjoint from S ∪ 2S. For eah x ∈ S,
A′ ontains the reation

(∅, {x}, {x̄}) (6)and, for eah a = (∅, Ia, Pa) ∈ A, the reations
(∅, {x̄}, {Ia}) for eah x ∈ Ia (7)
(∅, {Ia}, Pa). (8)We prove, by indution on n, that for all T ⊆ S we have

resnA′(T ) ∩ S = res
n/3
A (T ) if n = 3m; (9)

x̄ ∈ resnA′(T ) ⇐⇒ x /∈ res
(n−1)/3
A (T ) if n = 3m+ 1; (10)

Ia ∈ resnA′(T ) ∩ 2S ⇐⇒ Ia ∩ res
(n−2)/3
A (T ) 6= ∅ if n = 3m+ 2. (11)
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Simple Reation Systems and Their Classi�ation 449For n = 0, we have res0A′(T ) ∩ S = T = res0A(T ).If n > 0 is a multiple of 3, then by indution hypothesis

Ia ∈ resn−1
A′ (T ) ∩ 2S ⇐⇒ Ia ∩ res

(n−3)/3
A (T ) 6= ∅.Notie that, if X ∈ resn−1

A′ (T ) ∩ 2S, then neessarily X = Ia for some a ∈ A, as theonly reations produing elements of 2S have the form (7). For eah reation a ∈ Awe have a orresponding reation a′ of type (8), and a is inhibited at time n−3
3 in Aif and only if a′ is inhibited at time n− 1 in A′: statement (9) follows.If n > 0 with n = 3m+ 1, by indution hypothesis we have

resn−1
A′ (T ) ∩ S = res

(n−1)/3
A (T ).We have x̄ ∈ resnA′(T ) if and only if the reation (∅, {x}, {x̄}) was enabled at time

n− 1, that is x /∈ resn−1
A′ (T ) ∩ S = res

(n−1)/3
A (T ) as required.Finally, if n > 0 with n = 3m+ 2, by indution hypothesis

x̄ ∈ resn−1
A′ (T ) ⇐⇒ x /∈ res

(n−2)/3
A (T ).Let a ∈ A. We have Ia ∈ resnA′(T )∩ 2S if and only if at least one of the reations ofthe form (7) was enabled at time n − 1. This means that there exists x ∈ Ia suhthat x̄ /∈ resn−1

A′ (T ) and x ∈ res
(n−2)/3
A (T ). Equivalently, Ia ∩ res

(n−2)/3
A (T ) 6= ∅.This proves (11).The statement of the proposition immediately follows from (9).The result funtions of reation systems using only inhibitors oinide with thefuntions f : 2S → 2S for whih X ⊆ Y implies f(X) ⊇ f(Y ), i.e., the antitonefuntions.Proposition 15. A funtion f : 2S → 2S with |S| = i is antitone if and onlyif f = resA for some A ∈ RS(0, i).Proof. Let A = (S,A) ∈ RS(0, i), and let T1 ⊆ T2 ⊆ S. Sine the reationsof A have no reagents, every a ∈ A that is enabled by T2 is also enabled by T1,hene resa(T2) ⊆ resa(T1). As a onsequene, the funtion resA is antitone:

resA(T2) =
⋃

a∈A

resa(T2) ⊆
⋃

a∈A

resa(T1) = resA(T1).Conversely, let f : 2S → 2S with |S| = i be antitone. Then, by Proposition 10, wehave f = resA for some A = (S,A) ∈ RS(i, i). Let A′ = (S,A′) ∈ RS(0, i) be thereation system obtained by erasing all reatants from the reations of A whih anatually be enabled, i.e.,
A′ = {(∅, I, P ) : (R, I, P ) ∈ A for some R ⊆ S with R ∩ I = ∅}.Then resA′ = resA. Indeed, for all T ⊆ S we have resA(T ) ⊆ resA′(T ), sinereation (∅, I, P ) ∈ A is enabled by T whenever (R, I, P ) ∈ A′ with R ∩ I = ∅is. In order to show the onverse inlusion resA′(T ) ⊆ resA(T ), let x ∈ resA′(T ).
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450 L. Manzoni, D. Poças & A. E. PorreaThen x ∈ P for some (∅, I, P ) ∈ A′ with I ∩T = ∅, and we have a = (R, I, P ) ∈ Afor some R ⊆ S with R∩I = ∅. Sine a is enabled by S−I, we have x ∈ resA(S−I),and, sine T ⊆ S − I and resA is antitone, we have resA(S − I) ⊆ resA(T ), i.e.,
x ∈ resA(T ) as required.This result also implies that the 3-simulation above is minimal.Proposition 16. RS(0,∞) �k RS(0, 1) for k < 3.Proof. By Proposition 12 we have RS(0,∞) �1 RS(0, 1).Let A = (S,A) ∈ RS(0,∞) with S 6= ∅ and (∅, S, S) as its only reation.Suppose A′ ∈ RS(0, 1) 2-simulates A. Then res2A′(∅) ∩ S = resA(∅) = S. ByProposition 15, resA′ is antitone, hene res2A′ is monotone. Thus res2A′(∅) ∩ S is asubset of res2A′(S) ∩ S, that is, res2A′(S) ∩ S = S 6= ∅ = resA(S), a ontradition.Sine an arbitrary funtion an be neither monotone nor antitone, reation sys-tems using only inhibitors are weaker than general ones.Lemma 17. RS(0,∞) ≺ RS(1, 1).Proof. Let A = (S,A) ∈ RS(1, 1) be a reation system with |S| ≥ 2 and
({x}, {y}, {x, y}) as its only reation. Suppose that A′ ∈ RS(0,∞) k-simulates A.If k is even, then reskA′ is monotone, whih is a ontradition sine

resA({x}) = reskA′({x}) ∩ S ⊆ reskA′({x, y}) ∩ S = resA({x, y}) = ∅.On the other hand, if k is odd, then reskA′ is antitone, and we obtain
resA(∅) = reskA′(∅) ∩ S ⊇ reskA′({x}) ∩ S = resA({x}) = {x, y},another ontradition.The key results on reation systems without reatants an be summarized asfollows.Theorem 18. RS(0, 1) ≈ RS(0,∞) ≺ RS(1, 1).5. Inhibitorless Reation SystemAnother way of limiting reation systems is by avoiding inhibitors. Reation systemsusing only reatants an always be simulated by using two reatants per reations.Lemma 19. RS(r, 0) �⌈log

2
r⌉ RS(2, 0

) for all r ≥ 2.Proof. Given A = (S,A) ∈ RS(r, 0), we de�ne a reation system A′ = (S′, A′) in
RS(2, 0) that ⌈log2 r⌉-simulates A.
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R = {r1, r2, r3, r4, r5, r6}

{r1, r2, r3, r4} {r5, r6}

{r1, r2} {r3, r4} {r5, r6}

X2

X1Fig. 1. A possible sequene X1,X2 of overings of the set R = {r1, . . . , r6}. Notie that X1 and X2ontain the same set {r5, r6}. The entities assoiated with R in S′ are then r1, . . . , r6 from R,together with {r1, r2}1, {r3, r4}1, {r5, r6}1 from X1, and {r1, r2, r3, r4}2, {r5, r6}2 from X2.First of all, we need a way to desribe a set by a olletion of its subsets ofbounded ardinality. A k-overing of a �nite set Y is a family X = {X1, . . . , Xm}of subsets of Y suh that ⋃

X = Y and, for all Xi ∈ X , we have |Xi| ≤ k.Observe that, if |Y | = n, there exists a k-overing of Y with at most ⌈n
k ⌉ elements.Furthermore, if X = {X1, . . . , Xm} is a k-overing of Y , then a 2k-overing of Ywith ⌈m

2 ⌉ elements an be de�ned as X ′ = {X1 ∪X2, X3 ∪X4, . . . , Xm−1 ∪Xm}.Let (R,∅, P ) ∈ A with R 6= ∅ and let X1 be a 2-overing of R with |X1| ≤ ⌈r/2⌉;given Xi with i < ℓ = ⌈log2 r⌉−1, let Xi+1 with |Xi+1| ≤ ⌈r/2i+1⌉ be a 2i+1-overingof R suh that, for eah Q ∈ Xi+1, there exist M,N ∈ Xi with M ∪N = Q. Then A′ontains the following reations, where the elements of a overing Xi are subsriptedby i:
(Q,∅, {Q1}) if Q ∈ X1 (12)
({Mi, Ni},∅, {Qi+1}) if M,N ∈ Xi, Q = M ∪N ∈ Xi+1, 1 ≤ i < ℓ (13)
({Mℓ, Nℓ},∅, P ) if R = M ∪N and M,N ∈ Xℓ . (14)The set A′ ontains reations (12)�(14) for eah a ∈ A having at least one reatant,and furthermore it ontains, unhanged, all the reations of A with no reatants.Notie that eah reation in A′ has at most two reatants, i.e., A′ ∈ RS(2, 0).An example of a sequene of k-overings for a set of reatants is given in Fig. 1.Notie how they an be visualized as the di�erent levels of a binary tree, where thehildren of a node are a ⌈

k
2

⌉-overing of the parent.Let a = (R,∅, P ) ∈ A with R 6= ∅, T ⊆ S, let A′
a ⊆ A′ be the set of reationsof type (12)�(14) simulating a, and let X1, . . . ,Xℓ the overings for a desribedabove. By onstrution, A′

a �preserves� the reatants of a in subsripted sets, in thefollowing sense:
R ⊆ T ⇐⇒ R ⊆

⋃

{M ∈ Xt : Mt ∈ restA′

a

(T )} for 1 ≤ t ≤ ℓ. (15)In partiular, at step ℓ, the two sets Mℓ, Nℓ of reation (14) belong to resℓA′

a

(T ) ifand only if R ⊆ T , and at the next step we have res
⌈log

2
r⌉

A′

a

(T ) = resa(T ).
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⌈log
2
r⌉

A′

a

(T ), with A′
a = {a}, for reations with noreatants. Sine all the reations involve no inhibitors, we have

resA(T ) =
⋃

a∈A

resa(T ) =
⋃

a∈A

res
⌈log

2
r⌉

A′

a

(T ) ⊆ res
⌈log

2
r⌉

A′ (T ) ∩ S.Now let x ∈ res
⌈log

2
r⌉

A′ (T ) ∩ S. Then, x is either a produt of a reation (∅,∅, P )belonging to both A and A′, or of a reation of type (14). In the �rst ase, itimmediately follows that x ∈ resA(T ).In the seond ase, the reation of type (14) simulates a reation a ∈ A havingreatants R = M ∪ N with Mℓ, Nℓ ∈ resℓA′(T ). The two sets Mℓ, Nℓ are, in turn,produts of reations of type (12) or (13) belonging to A′
a; hene,Mℓ, Nℓ ∈ resℓA′

a

(T ).By (15) we have R ⊆ T , hene x ∈ resa(T ) ⊆ resA(T ).This proves that the reation system A′ ⌈log2 r⌉-simulates A.The result funtions of this sublass of reation system are exatly the monotonefuntions.Proposition 20. A funtion f : 2S → 2S with |S| = r is monotone if and onlyif f = resA for some A ∈ RS(r, 0).Proof. Let A = (S,A) ∈ RS(r, 0), and let T1 ⊆ T2 ⊆ S. Sine the reationsof A have no inhibitors, every a ∈ A that is enabled by T1 is also enabled by T2,hene resa(T1) ⊆ resa(T2). As a onsequene, the funtion resA is monotone:
resA(T1) =

⋃

a∈A

resa(T1) ⊆
⋃

a∈A

resa(T2) = resA(T2).Conversely, let f : 2S → 2S with |S| = r be monotone. Then, by Proposition 10,we have f = resA for some A = (S,A) ∈ RS(r, r). Let A′ = (S,A′) ∈ RS(r, 0) bethe reation system obtained by erasing all inhibitors from the reations of A whihan atually be enabled, i.e.,
A′ = {(R,∅, P ) : (R, I, P ) ∈ A for some I ⊆ S with R ∩ I = ∅}.Then resA′ = resA. Indeed, for all T ⊆ S we have resA(T ) ⊆ resA′(T ), sinereation (R,∅, P ) ∈ A′ is enabled by T whenever (R, I, P ) ∈ A is. In order toshow the onverse inlusion resA′(T ) ⊆ resA(T ), let x ∈ resA′(T ). Then x ∈ P forsome (R,∅, P ) ∈ A′ with R ⊆ T , and there exists a = (R, I, P ) ∈ A for some I ⊆ Swith R ∩ I = ∅. Sine a is enabled by R, we have x ∈ resA(R) and, sine resA ismonotone, we have resA(R) ⊆ resA(T ), i.e., x ∈ resA(T ) as required.Another property of reation systems using r reatants per reation and noinhibitors is that every entity generated in n steps is also generated by a state withat most rn entities.Lemma 21. Let A = (S,A) ∈ RS(r, 0). Then, for all T ⊆ S and n ∈ N, if

x ∈ resnA(T ) then there exists T ′ ⊆ T with |T ′| ≤ rn suh that x ∈ resnA(T
′).
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Simple Reation Systems and Their Classi�ation 453Proof. By indution on n. If n = 0, then resnA(T ) = T , hene x ∈ resnA(T )means x ∈ T ; by letting T ′ = {x} we have T ′ ⊆ T , |T ′| = 1 ≤ rn, and x ∈ resnA(T

′).Now suppose n > 0. If x ∈ resnA(T ), then x is the produt of some reation
a = (R,∅, P ) ∈ A with |R| ≤ r and x ∈ P , and furthermore we have R ⊆ resn−1

A (T ).By applying |R| times the indution hypothesis, we know that for eah y ∈ R thereexists T ′
y ⊆ T with |T ′

y| ≤ rn−1 suh that y ∈ resn−1
A (T ′

y). Let T ′ =
⋃

y∈R T ′
y ⊆ T ;sine the funtion resA is monotone (Proposition 20), we have y ∈ resn−1

A (T ′)for all y ∈ R, that is, R ⊆ resn−1
A (T ′). Hene a is enabled by resn−1

A (T ′), giving
x ∈ P ⊆ resnA(T

′). Sine |T ′| ≤
∑

y∈R |T ′
y| ≤ r × rn−1, the thesis follows.Lemma 21 implies that the ⌈log2 r⌉-simulation we employed when reduing thenumber of reatants to 2, whih is the only k-simulation in this paper where kdepends on the size of the simulated reation system, annot be improved.Proposition 22. RS(r, 0) �k RS(2, 0) for every k < ⌈log2 r⌉.Proof. Let A = (S,A) with |S| = r and (S,∅, S) as its only reation. Then

A ∈ RS(r, 0), and
resA(T ) =

{

S if T = S

∅ if T ( S .Suppose A′ ∈ RS(2, 0) k-simulates A for some k < ⌈log2 r⌉, and let x ∈ resA(S).Then x ∈ reskA′(S) ∩ S, and in partiular x ∈ reskA′(S). By Lemma 21, there existsa T ′ ⊆ S suh that x ∈ reskA′(T ′) and |T ′| ≤ 2k. Sine k is integer, k < ⌈log2 r⌉implies k < log2 r, hene |T ′| ≤ 2k < 2log2 r = r = |S|, that is, T ′ ( S. However,sine x ∈ S, we have x ∈ reskA′(T ′) ∩ S = resA(T
′) = ∅, a ontradition.When only one reatant per reation is used, we haraterize the subset of themonotone funtions onsisting of all the additive ones, i.e., the endomorphisms ofthe join-semilattie (2S ,∪). A funtion f : 2S → 2S is an endomorphism if and onlyif f(X ∪ Y ) = f(X) ∪ f(Y ) for all X,Y ⊆ S.Proposition 23. A funtion f : 2S → 2S is a join-semilattie endomorphism ifand only if f = resA for some A ∈ RS(1, 0).Proof. Let A = (S,A) ∈ RS(1, 0), and let T1, T2 ⊆ S. Sine the reations of Ahave no inhibitors, a reation enabled by T ⊆ S is also enabled by all its supersets;hene resA(T1)∪ resA(T2) ⊆ resA(T1 ∪ T2). Conversely, let x ∈ resA(T1 ∪ T2); then,there exists (R,∅, P ) ∈ A with x ∈ P and R ⊆ T1 ∪ T2. Sine |R| ≤ 1, we haveeither R ⊆ T1 or R ⊆ T2. Hene x ∈ resA(T1) or x ∈ resA(T2); therefore weobtain resA(T1 ∪ T2) ⊆ resA(T1) ∪ resA(T2).Now let f : 2S → 2S , with |S| = r, be a join-semilattie endomorphism. Then f ismonotone, and by Proposition 20 we have f = resA for some A = (S,A) ∈ RS(r, 0).
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454 L. Manzoni, D. Poças & A. E. PorreaLet A′ = (S,A′) ∈ RS(1, 0) be the reation system obtained from A by deletingthe reations having more that one reatant, i.e.,

A′ = {(R,∅, P ) : (R,∅, P ) ∈ A and |R| ≤ 1}.Then resA′ = resA. Indeed, let T ⊆ S; sine resA is a homomorphism, we have
resA(T ) = resA

(

∅ ∪
⋃

y∈T

{y}
)

= resA(∅) ∪
⋃

y∈T

resA({y}).Only reations with at most one reatant (those in A′) are enabled by {y}, henewe have
resA(T ) = resA′(∅) ∪

⋃

y∈T

resA′({y}) = resA′

(

∅ ∪
⋃

y∈T

{y}
)

= resA′(T )sine resA′ is a homomorphism, as proved above.Even when iterated, join-semilattie endomorphisms do not haraterize allmonotone funtions; hene, one reatant is weaker than two.Lemma 24. RS(1, 0) ≺ RS(2, 0).Proof. The iterated omposition of a join-semilattie endomorphism is also a join-semilattie endomorphism:
fk(T1 ∪ T2) = fk−1(f(T1) ∪ f(T2)) = · · · = fk(T1) ∪ fk(T2).Let S = {x, y} and g : 2S → 2S be de�ned by g(S) = S and g(T ) = ∅ for T 6= S.Notie that g is monotone but not a join-semilattie endomorphism. Then, forevery S′ ⊇ S, every join-semilattie endomorphism f : 2S

′

→ 2S
′ , and every k ∈ N,if fk(T ) ∩ S = g(T ) for all T ⊆ S, we have

g(S) = fk({x} ∪ {y}) ∩ S =
(

fk({x}) ∩ S
)

∪
(

fk({y}) ∩ S
)

= g({x}) ∪ g({y}) = ∅.However, g(S) = S, a ontradition.Perhaps surprisingly, a single inhibitor simulates arbitrarily many reatants.Lemma 25. RS(∞, 0) �2 RS(0, 1).Proof. Let A = (S,A) ∈ RS(∞, 0). Let A′ = (S′, A′) ∈ RS(0, 1) with S′ = S ∪ 2Sand having, for eah reation a = (Ra,∅, Pa) ∈ A, the following set of reations:
(∅, {x}, {Ra}) for eah x ∈ Ra (16)
(∅, {Ra}, Pa). (17)Let T ⊆ S. We prove, by indution on n, that

resnA′(T ) ∩ S = res
n/2
A (T ) if n is even (18)

Ra ∈ resnA′(T ) ⇐⇒ Ra * res
(n−1)/2
A (T ) if n is odd. (19)
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Simple Reation Systems and Their Classi�ation 455For n = 0 we have res0A′(T ) ∩ S = T = res0A(T ).For even n > 0 we have, by indution hypothesis,

Ra ∈ resn−1
A′ (T ) ⇐⇒ Ra * res

(n−2)/2
A (T ).Notie that the only reations in A′ with produts in S have the form (17), andthey are enabled at time n− 1 if and only if Ra ⊆ res

(n−2)/2
A (T ), i.e., if and only ifreation a is enabled in A at time n−2

2 . Condition (18) follows.For odd n > 0, by indution hypothesis we have
resn−1

A′ (T ) ∩ S = res
(n−1)/2
A (T ) .The only reations of A′ having produts in 2S have the form (16). The element Rais produed if and only if there exists x ∈ Ra with x /∈ resn−1

A′ (T ) ∩ S, i.e., if andonly if reation a is not enabled in A at time n−1
2 , as in (19).The statement of the lemma follows from (18).On the other hand, reatants alone annot simulate even a single inhibitor.Lemma 26. RS(2, 0) ≺ RS(0, 1).Proof. By Lemma 25 we have RS(2, 0) �2 RS(0, 1).Let A = (S,A) ∈ RS(0, 1) be de�ned by S = {x} and (∅, {x}, {x}) as the onlyreation. By Proposition 15, the funtion resA is antitone; furthermore, it is notmonotone, as it is not a onstant funtion. By Proposition 20, for any A′ ∈ RS(2, 0)the funtion reskA′ is monotone for all k ∈ N. Therefore, A′ annot k-simulate A.The following theorem summarizes the key results on reatant-only reationsystems.Theorem 27. RS(1, 0) ≺ RS(2, 0) ≈ RS(∞, 0) ≺ RS(0, 1).6. Classi�ation of Reation SystemsOnly one lass of reation systems is missing: those whih do not use reatants norinhibitors. They haraterize the onstant funtions.Proposition 28. A funtion f : 2S → 2S is onstant if and only if f = resA forsome A ∈ RS(0, 0).Proof. Let A = (S,A) ∈ RS(0, 0). Then, every reation a ∈ A has theform (∅,∅, Pa), and is always enabled, sine ∅ ⊆ T and ∅∩T = ∅ for eah T ⊆ S.Hene

resA(T ) =
⋃

a∈A

Pa for eah T ⊆ Si.e., resA is a onstant funtion.
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456 L. Manzoni, D. Poças & A. E. PorreaConversely, let f : 2S → 2S be a onstant funtion. Let A = (S,A) ∈ RS(0, 0) bethe reation system having (∅,∅, f(∅)) as its only reation. Then, for eah T ⊆ S,we have resA(T ) = f(∅) = f(T ) as required.Clearly, this variant of reation systems is weaker than all the others.Lemma 29. RS(0, 0) ≺ RS(1, 0).Proof. Let A = (S,A) ∈ RS(1, 0) be a reation system having ({x},∅, {x}) as itsonly reation, and suppose A′ ∈ RS(0, 0) k-simulates A. Then reskA′ is a onstantfuntion, and we have a ontradition:

∅ = resA(∅) = reskA′(∅) ∩ S = reskA′({x}) ∩ S = resA({x}) = {x}.The lassi�ation of reation systems with respet to the number of reatantsand inhibitors an thus be summarized as follows.Theorem 30. The relation � is a total preorder on the set of lasses of reationsystems of the form RS(r, i). The lasses are omparable aording to the followingdiagram for all r1 ≥ 1, r2 ≥ 2 and i ≥ 1:
RS(0, 0) ≺ RS(1, 0) ≺ RS(2, 0) ≺ RS(0, 1) ≺ RS(1, 1)

≈ ≈ ≈

RS(r2, 0) ≺ RS(0, i) ≺ RS(r1, i)

≈ ≈ ≈

RS(∞, 0) ≺ RS(0,∞) ≺ RS(∞,∞) .In partiular, the relation ≈ indues exatly �ve equivalene lasses.7. ConlusionsIn this paper a new notion of multi-step simulation between reation systems,alled k-simulation, has been de�ned. This de�nition allows a reation system to useboth additional time and additional entities to simulate another system. We haveproved that the lass of reation systems with only one reatant and one inhibitoris su�ient to simulate any other reation system using only two time steps perstep of the original system.We have investigated reation systems without reatants, i.e., having only in-hibitors, and we have proved that they haraterize exatly the antitone funtionsbetween Boolean latties and that every system of that kind an be simulated by asystem having reations with only one inhibitor. The situation when only reatantsare present is not symmetrial. In fat, these systems represent every monotonefuntion between Boolean latties, and to simulate them it is neessary to use tworeatants. The ase of reation systems having reations with only one reatant
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Simple Reation Systems and Their Classi�ation 457and zero inhibitors is stritly weaker, as they haraterize only additive funtions.Finally, reation systems without both reatants and inhibitors are the weakest onesand haraterize the onstant funtions.All the proposed onstrutions are provably optimal in time, i.e., the number oftime steps employed to simulate a step of the original system is minimal. Further-more, all onstrutions require a number of additional entities and reations that ispolynomial with respet to the sum of the ardinalities of the bakground and thereation sets of the original system.Summarizing, eah reation system belongs to one of �ve lasses, linearly orderedby the relation of k-simulability and haraterizing well-known lasses of funtionsbetween Boolean latties.Sine auxiliary entities are sometimes neessary when reduing the amount ofresoures in eah reation, it would be interesting to establish whih equivalenelasses are indued by a stronger form of k-simulation with auxiliary entities onlyappearing in the intermediate steps, i.e., satisfying resnA(T ) = resknA′ (T ).While the haraterization of the lasses of funtions orresponding to the �veequivalene lasses desribed in this paper is ompleted, it would be interesting toharaterize the funtions de�ned by other lasses of reation systems. Conversely,it would be interesting to start with a lass of funtions and investigate if it orre-sponds to some restrition on the resoures used by reation systems.Referenes[1℄ R. Brijder, A. Ehrenfeuht and G. Rozenberg, Reation systems with duration, Com-putation, Cooperation, and Life, eds. J. Kelemen and A. Kelemenová, Leture Notesin Computer Siene 6610 (Springer, 2011), pp. 191�202.[2℄ A. Ehrenfeuht, J. Kleijn, M. Koutny and G. Rozenberg, Minimal reation systems,Transations on Computational Systems Biology XIV , eds. C. Priami, I. Petre andE. de Vink, Leture Notes in Computer Siene 7625 (Springer, 2012), pp. 102�122.[3℄ A. Ehrenfeuht, M. Main and G. Rozenberg, Funtions de�ned by reation systems,International Journal of Foundations of Computer Siene 22(1) (2011) 167�168.[4℄ A. Ehrenfeuht and G. Rozenberg, Basi notions of reation systems, Developmentsin Language Theory, 8th International Conferene, DLT 2004, eds. C. S. Calude,E. Calude and M. J. Dinneen, Leture Notes in Computer Siene 3340 (Springer,2005), pp. 27�29.[5℄ A. Ehrenfeuht and G. Rozenberg, Reation systems, Fundamenta Informatiae 75(2007) 263�280.[6℄ L. Manzoni and A. E. Porrea, Reation systems made simple: A normal form and alassi�ation theorem, Unonventional Computation and Natural Computation, 12thInternational Conferene, UCNC 2013, eds. G. Mauri, A. Dennunzio, L. Manzoni andA. E. Porrea, Leture Notes in Computer Siene 7956 (Springer, 2013), pp. 150�161.[7℄ A. Salomaa, Funtions and sequenes generated by reation systems, Theoretial Com-puter Siene 466 (2012) 87�96.
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