
February 26, 2022 15:29 112-IJFCS 2250001

International Journal of Foundations of Computer Science

Vol. 33, No. 2 (2022) 91–118
c© World Scientific Publishing Company

DOI: 10.1142/S0129054122500010

The Power of Machines That Control Experiments

Vasco Boavida De Brito

Department of Mathematics, Instituto Superior Técnico

Universidade de Lisboa, Portugal
vascobbrito@gmail.com

José Félix Costa∗

Department of Mathematics, Instituto Superior Técnico
CFCUL – Centro de Filosofia das Ciências da Universidade de Lisboa

Universidade de Lisboa, Portugal

jose.felix.costa@tecnico.ulisboa.pt

Diogo Poças

LASIGE, Departamento de Informática, Faculdade de Ciências

Universidade de Lisboa, Portugal

dmpocas@fc.ul.pt

Received 22 February 2021
Accepted 12 January 2022

Published 16 February 2022

Communicated by Martin Kutrib

We consider the experimenter (e.g. the experimental physicist) as a Turing machine —

the digital component — and the experiment of measurement — the analog compo-
nent — as an oracle to the Turing machine. The algorithm running in the machine

abstracts the experimental method of measurement (encoding the recursive structure of

experimental actions) chosen by the experimenter. In this paper we prove that the cen-
tral analogue-digital complexity classes P, P/poly and P/poly∩ REC can be characterized

in terms of protocols to perform measurements controlled by standard Turing machines.

Keywords: Analogue computation; analogue-digital systems; hybrid systems; non-
uniform complexity; Church-Turing thesis.

1. Introduction

An oracle Turing machine consists in a standard Turing machine coupled with a

set — the oracle. Oracle Turing machines have an additional tape, the query tape,

and additional distinguished states, such as the so called query state QUERY. Upon

entering the query state, the machine makes a transition either to the distinguished

state YES or to the distinguished state NO, depending if the content of the query

∗Corresponding author.

91

http://dx.doi.org/10.1142/S0129054122500010

February 26, 2022 15:29 112-IJFCS 2250001

92 V. B. De Brito, J. F. Costa & D. Poças

tape is an element in the oracle set or not. This is done in a single time step. Oracle

Turing machines decide non-decidable sets relative to adequate non-decidable oracle

sets. Oracles however are external devices to the Turing machine that work as black

boxes, and in the years since their first idealization by Alan Turing the question if

there could be some computing model based in current physical theories that could

break the Turing barrier emerged, even if only abstractly, or in ideal conditions.

A notable contribution to the subject is the Analogue Recurrent Neural Network

(ARNN) introduced by Hava Siegelmann (see [25–28]), which consists in a neural

network with real valued synaptic weights. In [26, 27], it is shown that the ARNN

model decides sets that are not decidable by standard Turing machines. Questions

regarding the feasibility of these machines arose, even though Younger et al. have

claimed to have engineered an implementation of this model, the Optical ARNN (see

[25, 31]), allegedly capable of producing outputs which display behavior compatible

with that of chaotic systems.

A particular critic on any physical implementation of the ARNN model was Martin

Davis (see [20, 21]). He argued that the reason why such a model is able to decide

super-Turing sets is because the same sets are provided with the non-computable

real weights in the first place. Furthermore, Davis reasonably claims that even if

a machine could output a non-computable sequence of natural numbers, its non-

computability could never be verified in finite time. One way of formalising Davis’

argument is to interpret the computation of an ARNN as the process engaged by a

computational system that, given some input w, performs a measurement µ ∈ R of

some concept (e.g. the strength of a synapse in a neural network) up to an accuracy

depending on the size of w, and then decide if w is to be accepted by means of µ seen

as advice. The number k of bits of precision required can be obtained in linear time

in k. In this sense, the ARNN departs from being a realistic physical model in that the

activation function of the neurons is stepwise linear with discontinuous derivatives.

With a more realistic (analytic) activation function of the neurons, the time to read

the next bit of a real weight is exponential in the number of bits already extracted.

Although the Theory of Measurement (see [22, 24, 29]) does not take into account

the physical time needed for a measurement of increasing precision (as a function

of precision), the time complexity of a measurement is related with the computa-

tional extra power added by the real numbers that come into the computations.

Measurements should be regarded as information with possible error that take time

to accomplish. According to [10], this reduction of super-Turing capabilities can be

so great that the real numbers add no more power than the rational numbers.

A different computational paradigm to that of Siegelmann and Sontag was intro-

duced by Beggs, Tucker and Costa (starting with papers [4, 5]) in which Turing

machines may communicate with some physical apparatus, and thus measure some

unknown quantity, behaving as empirical scientists in a lab. The Turing machine

therefore uses a physical experiment, based in some theory of classical physics, as

an oracle, similarly to oracle Turing machines, and can execute queries over it.

However, the execution of physical experiments takes more than some fixed time,

February 26, 2022 15:29 112-IJFCS 2250001

The Power of Machines That Control Experiments 93

thus restrictions have to be imposed over how much time the Turing machine waits

for the physical experiment before cutting it off. The amount of time the machine

waits has been given by a time constructible function — the time schedule —,

which increases strictly with the size of the query. In most literature, time sched-

ules with exponential growth had to be chosen (see [2, 14]). This computational

model has two components at its disposal: the Turing machine, which corresponds

to the digital part; and the physical experiment, which is the analogue part. This

is why machines of this kind are known as analogue-digital Turing machines, or

ADTM’s. Multiple physical experiments have been considered for the physical oracle

of ADTM’s; the balance in [7], the collider in [12, 14], the Wheatstone bridge in [13],

among others. The complexity classes involved in such computations bounded to

a polynomial number of steps were fully characterised in [1, 2, 4–14, 16–18]. In

here, we consider the simplest experiment, the smooth scatter experiment (SmSE),

which is based on a sub-theory of Newtonian mechanics, although any other phys-

ical experiment could have been used to obtain the same results. We call an ADTM

with this physical oracle a smooth scatter machine (SmSM).

The SmSE is described in two dimensional space (see Fig. 1). It consists of two

main components: a smooth symmetrical wedge with vertex in some fixed position

between 0 and 1; and a cannon pointed towards the wedge, which can shoot particles

upon request of the SmSM, forcing these particle to be bounced off this barrier. The

experiment also has sensors on either side of the wedge which are activated if a shot

particle crosses them, effectively allowing us to determine on which side of the ver-

tex the particle hit the wedge. With information on the outcomes of successive shots

we can therefore carry out measurements over the position of the wedge, and obtain

approximations of this value. The position where the cannon fires the particle is

determined by the digital part of the SmSM, the Turing machine. The machine writes

the desired position in the query tape and makes a transition to the query state, just

like oracle Turing machines. The exact position where the cannon fires is determined

by the communication protocol between the analogue and digital parts of the SmSM.

We have been considering two such protocols: the infinite precision protocol, where

the cannon fires the particle exactly in the position written in the query tape; and

the fixed precision protocol where upon entering the query state with the number z

written in the query tape, the cannon fires somewhere in the interval [z − ε, z + ε],

for a fixed ε, which confers a degree of uncertainty to computations over

the SmSM.a

In this paper, we develop further results regarding the the power of analogue-

digital computation. The paper is structured in three main sections. In Sec. 2, we

formally introduce SmSM’s in detail. Note that the SmSM is a very simple exercise

aIt is interesting to note that in the 50’s von Neumann was already studying the possibility of har-
nessing continuous values present in Nature, and of carrying out reliable computation using unre-

liable components, either from artificial or naturally occurring systems ([30]). Likewise, although

the systems are very different, in the work that follows it is required to carry out computations
using unreliable procedures also.

February 26, 2022 15:29 112-IJFCS 2250001

94 V. B. De Brito, J. F. Costa & D. Poças

in measurement and that other gedankenexperimente involving measurement, as

far as we investigated in the last decade, turn out to be equivalent to the SmSM in

what concerns the complexity of the measurement map. Any attempt to consider

more sophisticated measurements only contributes to the illegibility of the paper.

In Sec. 3, we discuss some previous results in order to contextualize the work ahead.

Finally, in Sec. 4, we advance a new characterisation of relevant classes of sets for

analogue-digital computation such as P, P/poly and P/poly ∩ REC based on non-

computable time schedules.b The main statements of this paper can be synthesised

as follows:

Theorem 1. Let IN denote the class of increasing total functions, CI the class

of computable increasing total functions and TC the class of all strictly increasing

time constructible functions. Let AP (F) be the class of sets decidable by some SmSM

clocked in polynomial time, using a time schedule from F . We have that :

AP (TC) = P

AP (IN) = P/poly

AP (CI) = P/poly ∩ REC.

Comparing with the ARNN model (as in [26]), we conclude that while in the

ARNN model clocked in polynomial time by changing the type of the weights from

rationals to reals and from reals to computable reals, we get the classes P, P/poly,

and P/poly ∩ REC, in our new setting by changing the type of time schedules from

TC to IN and from IN to CI , we get the same classes P, P/poly, and P/poly∩ REC.

2. Physical Experiments as Oracles

In line with the work developed in [1, 2, 4–14, 16–18], inter alia, our main focus is

the study of the analogue-digital Turing machine, that is, a Turing machine that

besides being a computational device, also behaves as an algorithmic experimenter

performing analogue physical measurements. As we shall see, the introduction of

these experiments boosts the computational power of the machine to super-Turing

levels. Although we can imagine these measurements as oracle consultations, as we

shall see, these experiments work in a different manner, allowing us to include into

the computations of the Turing machine successive timed approximations to infinite

precision real numbers (denoted by R as usual).

2.1. Analogue-digital Turing machines

An analogue-digital Turing machine (ADTM), is a Turing machine with one input, one

output and working tapes, as well as an additional query tape used to control and

bLet C be a class of sets and F a class of total functions of signature N → Σ?. The non-uniform

class C/F is the class of sets A for which some C ∈ C and some f ∈ F are such that, for every w,

w ∈ A if and only if 〈w, f(|w|)〉 ∈ C. If we take C as P and F as poly, the set of polynomials over
N, then we get class P/poly. The class of recursive sets is herein denoted by REC.

February 26, 2022 15:29 112-IJFCS 2250001

The Power of Machines That Control Experiments 95

communicate with a given physical experiment. The finite control of each machine

include some distinguished states, an initial state, accepting and rejecting states, a

query state and a finite number of possible outcome states. When entering the query

state, the machine waits for a response from the physical experimental apparatus,

and resumes the computation in one of the outcome states. An ADTM is thus nothing

more than the combination of three components: the Turing machine, that carries

out the digital part of the computation; the physical experiment, that receives

the queries from the Turing machine and carries out the experiments; and the

interface of communication between these digital and analogue components. In

a sense, these machines resemble the hybrid machines of the 60’s, where the digital

component was performed by a digital computer, e.g. solving the temporal term

of Poisson’s equation, the analog component implemented by an special purpose

analog device, e.g. a membrane solving the Laplacian term of the same equation,

and the interface replaced by a transducer (see [19]).

2.1.1. The physical experiment

Physical experiments are what will serve as physical oracles to the ADTM, providing

the analogue component of our computation. In [2, 4, 5, 7, 9, 11, 14, 16, 18] a

variety of such experiments have been considered, all with some characteristics in

particular: The experiment considered must have some initial condition that can

be varied (in a set I), producing possibly different outcomes, of which there are

only finitely many (we shall denote their set by R). Furthermore, there must be a

physical process underlying the experiment, fully explained by a physical theory.

And finally, there must exist a time function texp : I → R, which is the experimental

time, over which we make the following assumptions:

(1) I = [0, 1];

(2) ∀x ∈ I, texp(x) > 0;

(3) texp is strictly increasing and unbounded in [0, y[;

(4) texp is strictly decreasing and unbounded in]y, 1];

(5) texp is continuous in [0, y[∪]y, 1].

The experimental time does not include the time to set up the physical experi-

ment, we consider that this is done instantaneously. The experimental time reflects

instead the time intrinsic to the physical phenomenon under investigation or mea-

surement.

2.1.2. The communication interface

The communication interface manages the communication between the Turing

machine and the physical experiment. It is composed of two parts: one is the pro-

tocol, which specifies to the physical experiment which sequence of instructions to

carry out. It begins by reading the query word from the query tape of the Turing

February 26, 2022 15:29 112-IJFCS 2250001

96 V. B. De Brito, J. F. Costa & D. Poças

machine, and its final step is to evaluate the result of the experiment and carry out

the computation of the Turing machine from a particular outcome state; the other

component of the communication interface is the time schedule, that has been

considered a time-constructible increasing total function T : N→ N that limits the

time that the Turing machine waits for an outcome of the experiment. We consider

that if an experiment that is being carried out with a query of size n produces no

result in time T (n), then the protocol terminates the experiment and carries on

the computation in a particular outcome state (further on we will always refer to

this state as qt, or timeout state). The inclusion of the time schedule is necessary

because, as explained in Sec. 2.1.1, queries to the physical experiment may take an

arbitrarily large, possibly infinite, amount of time. Limiting the time we wait for

the experiment thus prevents the machine from never halting, allowing a study of

the complexity classes that are decided by ADTM’s when considering different time

schedules, even in the case they are non-computable (possibly controlled by the

environment), while also limiting the precision of the experiment, as we shall see.

It is important to explain exactly what we mean when we say that the Turing

machine “waits”, and when we say that the experiment takes “time” greater than

T (n). When the Turing machine enters the query state, with a query word of size

n, it simulates a clock with T (n) time steps, which is possible when T is time-

constructible, and carries on the computation as stated above. Saying that the

machine “waits” is oversimplifying this fact, since it does not literally halt when an

experiment is carried out, waiting for some external signal to tell it enough “time”

has passed. It clocks itself with discrete time steps, corresponding to the time taken

to carry out steps of the Turing machine. Next, we relate the real physical time

taken by the experiment, texp, with the time taken by the Turing machine to carry

out T (n) steps, which we can do by making the units of these times the same. If

T is not time-constructible, then the Turing machine undergoes a process of busy

waiting until an answer to the query is received.

2.2. Smooth scatter experiment

We introduce now an example of a physical experiment — the Smooth Scatter

Experiment — that is considered for the ADTM’s in this paper. We define this exper-

iment just as it was done in [2, 16]. First of all, we need to define the physical

theory upon which our experiment is based. In this case this theory is a sub-theory

of Newtonian mechanics, in particular the following laws and assumptions:

(1) Particles obey the Newtonian laws of motion in the two-dimensional place;

(2) Collisions are perfectly elastic, i.e. kinetic energy is conserved in collisions;

(3) Barriers are rigid, hence they don’t deform as a result of collisions;

(4) A cannon can project a particle with a given velocity in a given direction;

(5) Detectors are capable of detecting if a particle has crossed a given region of the

plane;

February 26, 2022 15:29 112-IJFCS 2250001

The Power of Machines That Control Experiments 97

` m

` m

cannon

sample trajectory
v m/s

0

1

z

limit of traverse of cannon
cannon aims at dyadic z ∈]0, 1[

0

1

y

limit of traverse
of point of wedge

V

φ
φ

w

x

left collecting box

right collecting box

Fig. 1. The smooth scatter experiment.

With our physical laws and assumptions at hand, we can now describe the phys-

ical experiment that will be considered throughout this paper, the Smooth Scatter

Experiment, or SmSE, as described in Fig. 1. Consider an horizontal and vertical

axes, w and x respectively. We consider a smooth curve, symmetric relatively to

some horizontal line with height y ∈ [0, 1] which is unknown. Carrying out the

experiment means firing a particle from a cannon at a fixed speed, perpendicularly

to the x axis of the curve, at some position z ∈ [0, 1]. There are two sensors set

in lines parallel to the w axis, one above, and another below the curve, and both

at the same distance of the w axis, that detect if the fired particle has crossed

them or not. If the fired particle crosses the upper sensor, then we say it enters

the right collecting box, if it crosses the lower one, then we say in enters the left

collecting box.

Thus, in whichever way we carry out the experiment, we only have three possible

outcomes:

(1) z > y and thus after some time, the fired particle is detected by the upper

sensor;

(2) z < y and thus after some time, the fired particle is detected by the lower

sensor;

(3) z = y and the fired particle is not detected by either sensor.

Thus if we know what the result of the experiment is, and carrying it out multiple

times, we can effectively measure y (assuming of course that the experiment does

not run forever, or that we can find a way to deal with that). The proof of the

following proposition gives us the bounds for the experimental time.

Proposition 2 (Beggs, Costa and Tucker in [16]). Let g(x) be the function

describing the shape of the wedge of a SmSE. Suppose that g(x) is n times contin-

uously differentiable near x = 0, all its derivatives up to the (n − 1)th vanish at

x = 0, and the nth derivative is nonzero. Then, when the SmSE, with vertex position

February 26, 2022 15:29 112-IJFCS 2250001

98 V. B. De Brito, J. F. Costa & D. Poças

at y, fires the cannon at position z, the time needed to detect the particle in one of

the boxes is texp(z), where:

A

|y − z|n−1
≤ texp(z) ≤

B

|y − z|n−1
(1)

for constants A,B > 0 and for |y − z| sufficiently small.

From now on, just as was done in [2], we will consider that the function g(x) that

describes the shape of the wedge is continuously differentiable twice, with g′(y) = 0

and g′′(y) 6= 0, effectively having n = 2 in the equation above. If one wanted to

measure y using the cannon position z with |y−z| ≤ 2−m, then from Eq. (1) we can

conclude that texp(z) ≥ A.2m, thus the experimental time is at least exponential in

the length / size of required precision over y, and infinite when z = y.

According to [8], any reasonable physical experiment could have been used:

We are led to question and make a first conjecture that this is common to

all physical experiments: For all reasonable physical theories T , for all rea-

sonable physical measurements based upon T , the T -time for the physical

experiment is at least exponential in the size of the precision.

This conjecture comes from the fact that this exponential bound on experimen-

tal time has been observed in every reasonable physical experiment considered by

Beggs, Costa and Tucker in, for instance, [2, 7, 9, 13, 14, 16].

2.3. The smooth scatter machine

A smooth scatter machine, or SmSM, is nothing more than an analogue-digital Turing

machine which uses a smooth scatter experiment as a physical oracle. It communi-

cates with the SmSE through the query tape. When the machine make a transition

to the query state, the SmSE is carried out with the cannon in the position given

by the dyadic rational in the tape. Since the SmSE can be carried out with can-

non positions in the interval [0, 1], and the SmSM can only print binary words in

the query tape, we have that the SmSM can either write the word “1” or a binary

word beginning with 0 in the query tape. Hence queries can be carried out with

z = z0z1 . . . zn ∈ {1} ∪ {0s : s ∈ {0, 1}?}, with the corresponding dyadic rational

being:

n∑
i=0

zi2
−i

This number represents the cannon position in [0, 1] with which the experiment will

take place. We will use z to denote both the query word used by the SmSM and

the corresponding dyadic rational, for it is implied by context which form we are

using.

Additionally, since a SmSM is an ADTM, to fully characterize it we need to define

a time schedule T and a communication protocol, as described in Sec. 2.1.2. The

February 26, 2022 15:29 112-IJFCS 2250001

The Power of Machines That Control Experiments 99

three protocols that have been considered so far in the previous papers are:

Protocol 1. We say that a SmSM M, with access to a SmSE, has an error-free

protocol or an infinite precision protocol if when M enters the query state with the

word z in the query tape, the SmSE carries out the experiment with the cannon in

the position z′ = z.

Protocol 2. We say that a SmSM M, with access to a SmSE, has an unbounded

precision protocol if when M enters the query state with the word z in the

query tape, the SmSE carries out the experiment with the cannon in the position

z′ ∈ [z− 2−|z|, z+ 2−|z|], where |z| is the number of bits of z. The probability distri-

bution of z′ in this interval is considered to be uniform and independent of previous

experiments.

Protocol 3. We say that a SmSM M, with access to a SmSE, has a finite precision

protocol if when M enters the query state with the word z in the query tape, the

SmSE carries out the experiment with the cannon in the position z′ ∈ [z − ε, z + ε],

for a fixed ε > 0. The probability distribution of z′ in this interval is considered to

be uniform and independent of previous experiments.

We can now formally define the SmSM:

Definition 3 (Smooth Scatter Machine). A Smooth Scatter Machine, or SmSM

is an ADTM using a SmSE as a physical oracle, with a specified time schedule T , a fixed

vertex position y ∈ [0, 1] and equipped with one of the communication protocols

above.

We now define that for all SmSM’s, regardless of the protocol, when the associated

SmSE carries out the experiment with query word z we have that:

(1) If the particle crosses the upper sensor in T (|z|) time steps or less, then the

SmSM resumes the computation in the output state qr;

(2) If the particle crosses the lower sensor in T (|z|) time steps or less, then the SmSM

resumes the computation in the output state q`;

(3) If the experiment times out, then the SmSM resumes the computation in the

output state qt.

We define decidability by an SmSM, noting that in the case of error prone SmSM

every query to the SmSE is a probabilistic event, hence the acceptance criteria for

these machines is similar to that of probabilistic Turing machines.

Definition 4. Let A ⊆ Σ? be a set of words over the alphabet Σ. We say that a

SmSMM with the infinite precision protocol decides A if for every w ∈ Σ?, if w ∈ A,

M accepts w, and if w /∈ A, M rejects w. We say that M decides A in polynomial

time if there exists a polynomial p such that for every w ∈ Σ?, if w ∈ A,M accepts

w in p(|w|) or less steps, and if w /∈ A, M rejects w in p(|w|) or less steps.

February 26, 2022 15:29 112-IJFCS 2250001

100 V. B. De Brito, J. F. Costa & D. Poças

Definition 5. Let A ⊆ Σ? be a set of words over the alphabet Σ. We say that

a SmSM M with an error-prone protocol decides A if there exists a γ < 1
2 such

that for every w ∈ Σ?, if w ∈ A, M accepts w with error probability less than

γ, and if w /∈ A, M rejects w with error probability less than γ. We say that M
decides A in polynomial time if there exists a polynomial p such that for every

w ∈ Σ?, if w ∈ A, M accepts w in p(|w|) or less steps with error probability less

than γ, and if w /∈ A,M rejects w in p(|w|) or less steps with error probability less

than γ.

We will only be considering in this paper the infinite precision case.

2.3.1. The linear search algorithm

It is important to understand how we can perform measurements using the SmSM.

We consider x�` to be the prefix of size ` of x, if |x| ≥ `, or the word x padded

with a number k of 0′s such that the resulting word x0k has size `, otherwise. In

Algorithm 1, we specify the linear search algorithm for infinite precision SmSM’s.

This algorithm allow us to measure the vertex position y bit by bit, assuming

there are no timeouts. If there is a timeout for the cannon position z�`, then this

means that texp(z�`) > T (`), and since from Eq. (1) we have that texp(z�`) ≤ B
|z�`−y|

for some B, we would have that |z�` − y| < B
T (`) .

If there are no timeouts, then we need ` runs to the experiment each taking

time at most T (`), so we need O(`T (`)) time steps. If, on the other hand, there

is a timeout, then the algorithm needs to run the cycle at most ` times, hence we

obtain the same complexity.

Algorithm 1 Linear search algorithm for infinite precision SmSM

input ← ` is the desired precision

x0 ← 0

x1 ← 1

z ← 0

while x1 − x0 > 2−` do

z ← (x0 + x1)/2

s← state after executing SmSE with cannon in position z�`
if s = qr then

x0 ← z . we know that z�` > y

else if s = q` then

x1 ← z . we know that z�` < y

else

return “timeout”

end if

end while

return z�l

February 26, 2022 15:29 112-IJFCS 2250001

The Power of Machines That Control Experiments 101

2.3.2. The Cantor set C3
The Cantor set of base 3 (C3) is the set of real numbers of the form x =∑∞
k=1 xk2−3k, where xk ∈ {1, 2, 4}. In other words, C3 is the set of numbers

composed by the concatenation of triples of the form 100, 010 or 001. The following

proposition regarding these numbers will be useful to prove the lower bounds of the

computational power of the infinite precision SmSM.

Proposition 6 (Beggs, Costa, Poças, and Tucker in [2, 7]). For every x ∈ C3
and for every dyadic rational z ∈ [0, 1] with size |z| = m, if |x− z| ≤ 2−(i+5), then

x and z coincide in the first i bits, and |x− z| > 2−(m+10).

Proof. Suppose that x and z coincide in the first i − 1 bits but differ in the ith.

We want to show that |x− z| > 2−(i+5). We have two cases to consider:

(1) z < x. In this case the ith bits of z and x are 0 and 1 respectively. In the

worst case the binary expansion of z is followed by 1’s after the ith bit. Because

x ∈ C3, following the ith bit there can be no more than four consecutive bits

with the value 0, hence in the worst case, the binary expansions of z and x

from the ith bit onwards are respectively 011111 · · · and 100001 · · · and so

|x− z| > 2−(i+5).

(2) z > x. In this case the ith bits of z and x are 1 and 0 respectively. In the worst

case, the binary expansion of z is followed by 0’s after the ith bit. Because

x ∈ C3, following the ith bit there can be no more than two consecutive bits with

the value 1, hence in the worst case, the binary expansions of z and x from the

ith bit onwards are respectively 1000 · · · and 0110 · · · and so |x− z| > 2−(i+3).

So we have established that if |x − z| ≤ 2−(i+5), then x and z coincide in the

first i bits. Now we need to prove that for any dyadic rational z with |z| = m,

|x− z| > 2−(m+10). If z 6= x�m this is straightforward. Suppose now that z = x�m.

Since x ∈ C3, it can have at most four consecutive bits with the value 0, hence,

since all the bits of the binary expansion of z from the mth bit onwards are 0, we

have that z and x’s binary expansion coincide at most in m + 4 bits, and differ

in the (m + 5)th. Therefore, by the first part of the proof of this proposition,

|x− z| > 2−(m+10).

We use numbers in Cantor set to encode words in the following way: take w ∈
{0, 1}?, c(w) is a codification of w that consists in substituting every 1 by 010 and

every 0 by 100. Furthermore, considering a prefix advice function f : N→ {0, 1}?,c
we denote its encoding as the real number given by y(f) = lim y(f)(n), where

cAn advice function f : N→ {0, 1}? is a total function which assigns a word for each (input size)

n ∈ N. A prefix advice function is an advice function f such that, for any n,m ∈ N, if n < m,

then f(n) is a prefix of f(m). If F is a class of advice functions, then we denote by F? the class
of prefix functions in F .

February 26, 2022 15:29 112-IJFCS 2250001

102 V. B. De Brito, J. F. Costa & D. Poças

y(f)(n) is defined recursively as follows (take f(n+ 1) = f(n).s):

y(f)(0) = 0.c(f(0))

y(f)(n+ 1) =

{
y(f)(n).c(s) if n+ 1 is not a power of 2

y(f)(n).c(s).001 if n+ 1 is a power of 2.

(2)

3. Lower and Upper Bounds

3.1. Lower bounds

We will now provide a lower bound for the computational power of infinite precision

SmSM’s. We begin by proving an auxiliary proposition.

Proposition 7. Take a prefix function f ∈ log.d There exists an SmSMM clocked

in polynomial time in n with time schedule T (k) ∈ Θ(2k) and access to a SmSE with

wedge in the position y(f) that determines f(n).

Proof. Suppose that 2m−1 < n ≤ 2m for positive m. Since f ∈ log, |c(f(n))| ≤
adlog ne + b for some a, b ∈ N, which means, according to Eq. (2), that we need

at most k = (a + 3)m + b bits of y(f) to obtain f(n). Note that k is logarithmic

in n. We now apply the linear search algorithm introduced in Sec. 2.3.1. Firstly, we

need to guarantee that there are no timeouts during its execution. By Proposition 6,

since y(f) ∈ C3, any dyadic rational x with |x| = k is such that |x−y(f)| > 2−(k+10).

Using this fact and Eq. (1) for the experimental time, we conclude that texp(x) <

B.2k+10, and so if we choose our time schedule to be T (k) = B.2k+10 we guarantee

that there will be no timeouts during the execution of the linear search algorithm.

As seen in Sec. 2.3.1, the linear search algorithm will take time O(kT (k)) which,

since k is logarithmic in n, is O(n log n) which is polynomial in n. Finally, given

y(f)(2m), we can obtain f(2m) in polynomial time in n.

Proposition 8. If A ∈ P/ log ?, then there exists a SmSMM clocked in polynomial

time with infinite precision and time schedule T (k) ∈ Θ(2k) that decides A.

Proof. A ∈ P/ log ?, therefore there exists a set D ∈ P, witnessed by some Turing

machineM′, and a prefix function f ∈ log such that for all w ∈ {0, 1}?, and for all

n ≥ |w|, w ∈ A if and only if 〈w, f(n)〉 ∈ D. We outline in Algorithm 2 the SmSM

M with vertex position of the associated SmSE at y(f), as described in Eq. (2).

According to the proof of Proposition 7, if we choose the schedule T (k) =

B.2k+10 for M, and using the linear search algorithm, we can conclude step 3 in

polynomial time in 2m (and hence in polynomial time in |w|). Moreover, since f ∈
log, we have that |f(2m)| ∈ O(m), and so |〈w, f(2m)〉| ∈ O(|w| log |w|) ⊆ O(|w|2).

Thus we can conclude that steps 4 and 5 take polynomial time in |w|; hence M
decides A in polynomial time.

dlog denotes the class of advice functions such that |f(n)| ∈ O(log(n)).

February 26, 2022 15:29 112-IJFCS 2250001

The Power of Machines That Control Experiments 103

Algorithm 2 SmSMM
1: input ← w

2: find m such that 2m−1 < |w| ≤ 2m

3: use the SmSE to obtain f(2m) . polynomial in 2m time (Proposition 7)

4: build 〈w, f(2m)〉
5: simulate M′ on 〈w, f(2m)〉
6: if M′ accepts 〈w, f(2m)〉 then

7: accept w;

8: else

9: reject w

10: end if

3.2. Boundary numbers

Boundary numbers are the closest values to the vertex position y for which we

can fire the cannon and get a result before timing out. Since the wedge curve is

symmetric, we expect that we will have one of these numbers greater than y and

another smaller. They are defined as follows:

Definition 9. Let y be the vertex position and T the time schedule for a SmSM.

For a fixed query size k, we define the boundary numberse as 0 < `k, rk < 1, such

that `k < y < rk and texp(`k) = texp(rk) = T (k).

Given an experiment with cannon position z with |z| = k, we have three possible

cases:

(1) lk < z < rk. Here, since z is closer to the vertex position y than the boundary

numbers, we conclude that texp(z) > texp(`k) and texp(z) > texp(rk). Since

texp(`k) = texp(rk) = T (z), the experiment will timeout.

(2) z ≤ `k. We have that z ≤ `k < y, so texp(z) ≤ texp(`k) because z < y and z

is further away from the vertex position than `k. Therefore, from Definition 9,

texp(z) ≤ T (k), and so the experiment will not timeout and the particle will be

detected in the left collecting box.

(3) z ≥ rk. Very similar to the previous case, the experiment will not timeout and

the particle will be detected in the right collecting box.

To help visualize how these values behave, it is helpful to note that as k increases,

`k and rk get closer to the vertex position y (see Fig. 2). This is because the time

schedule T is an increasing function, and texp is strictly increasing in [0, y[and

strictly decreasing in]y, 1].

eWe will always consider the binary expansion of these numbers with no infinite sequence of 1’s.

February 26, 2022 15:29 112-IJFCS 2250001

104 V. B. De Brito, J. F. Costa & D. Poças

T H1L
T H2L

T H3L

T H4L

T H5L

l1 l2 l3 l4 l5 r1r2r3r4r5

yyyyy0.2 0.4 0.6 0.8 1.0

1.2

1.4

1.6

1.8

Fig. 2. Behavior of `k and rk.

These values, `k and rk, are useful because if we have access to their prefixes we

can simulate queries to the SmSE.

Proposition 10. Take a SmSM with left boundary number `k, for some fixed k. If

we have access to `k�k then, for any query z with |z| = k, we can determine in

linear time in k whether the SmSM will make a transition to state q` with query z.

Proof. Take query z with |z| = k, and `k�k. Since |z| = |`k�k| = k, the comparison

of these words will be done in time O(k). Suppose that z > `k�k. Then z > `k and

therefore the outcome of the SmSE with z will either be the right collecting box or

timeout, hence the SmSM will not resume the computation in state q`. Suppose that

z ≤ `k�k. Since `k�k ≤ `k, we have that z ≤ `k. We know that the SmSM will resume

in state q`.

For the boundary number rk we cannot prove a result as straightforward as

Proposition 10. This is because if we have a query z of size k, and z = rk�k we

cannot infer if z = rk or z < rk. Due to this, we would not be able to determine

the result of executing the SmSE with query z. However, if we know some additional

information about rk (namely if it has a non-zero bit in some position k′ with

k′ > k) this becomes feasible.

Definition 11. Given a fixed k ∈ N, and a SmSM with rk, right boundary number

of order k, we definine σk as:

σk =

{
1 rk�k = rk

0 otherwise.
(3)

February 26, 2022 15:29 112-IJFCS 2250001

The Power of Machines That Control Experiments 105

Therefore we have that σk = 1 if and only if rk can be expressed as a dyadic

rational of size k.

Proposition 12. Take a SmSM with right boundary number rk, for some fixed k. If

we have access to rk�k and σk then, for any query z with |z| = k, we can determine

if the SmSM will make a transition to state qr with query z, in linear time over k.

Proof. Take query z with |z| = k, rk�k and σk. Since |z| = |rk�k| = k, the com-

parison of these words can be done in time O(k). Suppose that z = rk�k. We have

two cases, either σk = 1 or σk = 0. In the former case, by definition of σk we have

that rk = rk�k and so z = rk. The result will be state qr. If, on the other hand,

σk = 0, again by definition of σk we have that rk > rk�k; therefore rk > z and thus

the outcome of the experiment with cannon position z will either be q` or qt.

The cases where z < rk�k and z > rk�k are handled very similarly to what was

done in the proof of Proposition 10.

Unifying Propositions 10 and 12, the following proposition becomes trivial.

Proposition 13. Take a SmSM with boundary numbers `k and rk, for some fixed k.

If we have access to `k�k, rk�k, and σk then, for any query z with |z| = k, we can

determine in linear time over k to which state the SmSM will make a transition to,

after executing the SmSE with query z.

3.3. Upper bounds

We fix now the upper bounds for the SmSM clocked in polynomial time.

Proposition 14 (Ambaram, Beggs, Costa, Poças, and Tucker in [2]). If

A ⊆ {0, 1}? is decided by an infinite precision SmSM clocked in polynomial time with

time schedule T (n) ∈ Ω(2n), then A ∈ P/ log2 ?.

Proof. Let M be the infinite precision SmSM that decides A in polynomial time

O(nk), and T be the time schedule, such that T (n) ∈ Ω(2n). Since the schedule is

exponential, queries to the SmSE can only be at most logarithmic in size, otherwise

an experiment would take more than polynomial time. Let λ = ablog nc+ b be the

bound for query sizes of M. Take the following advice function f , such that f(λ)

encodes the prefixes of `k and rk needed to simulate queries to the SmSE of size up

to λ:

f(λ) = `1�1#r1�1#σ1#`2�2#r2�2#σ2# . . . `λ�λ#rλ�λ#σλ#.

It is easy to see that |f(λ)| =
(
4λ + 2

∑λ
i=1 i

)
, and hence |f(λ)| ∈ O(λ2), i.e.

|f(λ)| ∈ O(log2(n)). Take a Turing machine M′, receiving input 〈w, f(n′)〉, with

|w| = n and n′ ≥ n (where n′ is the least power of 2 greater or equal to n).

SupposeM′ mimicsM, replacing queries z to the SmSE by fetching `�|z|, r�|z|, and

σ|z| from f(n′), and simulating the experiment. This simulation is done in time

February 26, 2022 15:29 112-IJFCS 2250001

106 V. B. De Brito, J. F. Costa & D. Poças

O(λ) = O(log n) according to Proposition 13. Obtaining the boundary numbers

from f(n′) is done in time O(log2 n) where n is the size of the input. Thus, we can

decide A in polynomial time with the prefix advice function f ∈ log2.

If we use a time schedule T such that T (k) ∈ Ω(2k), it is possible to codify

the relevant information relative to the boundary numbers in an advice function

f ∈ log.

Proposition 15 (Beggs, Costa, Poças, and Tucker in [2, 7]). Given the

boundary numbers for a SmSM with time constructible schedule T (k) ∈ Ω(2k) it is

possible to define a prefix advice function f such that f(λ) encodes all the prefixes

of the boundary numbers with size up to λ and |f(λ)| ∈ O(λ).

Proof. Take a SmSM with vertex position y and time schedule T (k) ∈ Ω(2k). We

know that ∃k0, α ∈ N such that ∀k ≥ k0(T (k) ≥ α2k). From now on we fix a k ≥ k0.

By the definition of rk, texp(rk) = T (k), and using the lower bound on experimental

time provided by Eq. (1), we conclude that ∃c(|y − rk| < 2c−k), and so, since by

definition of rk, y < rk:

y < rk < y + 2c−k. (4)

Now take rk�k = vkwk, with |vk| = k − c and |wk| = c. It is easy to see that

vk ≤ rk and rk < vk + 2k−c, and thus, using Eq. (4), we get y− 2c−k < rk− 2c−k <

vk ≤ rk < y + 2c−k. We conclude that

|vk − y| < 2c−k. (5)

The word vk can be of one of the three following forms, for some λ:

(1) vk = . . . 10λ. From Eq. (5) we conclude that either y�k−c = . . . 10λ or y�k−c =

. . . 01λ. Therefore, since we have |vk+1−y| < 2c−k−1 (again from Eq. (5)), vk+1

can be of one of the following forms:

. . . 10λ+1 . . . 10λ1 . . . 01λ+1 . . . 01λ0;

(2) vk = . . . 01λ. With the same reasoning as the case above, we conclude that

either y�k−c = . . . 01λ or y�k−c = . . . 01λ−10, and thus vk+1 can be of one of

the following forms:

. . . 01λ0 . . . 01λ+1 . . . 01λ−100 . . . 01λ−101;

(3) vk = 0k−c. This case is even simpler because y�k−c = 0k−c and so we are left

with just two possible cases for vk+1, 0k−c+1 and 0k−c1.

Thus, for k ≥ k0, if we know vk, we have at most four possible cases for vk+1, so

just two bits of information are needed to compute it. We will denote these bits as

bk0 and bk1. Furthermore, if we have vk+1 we just need wk+1 (that is, c additional

bits) to compute rk+1. Hence, for all k ≥ k0, we just need rk and (c + 2) bits

of information to compute rk+1. The same conclusion can be drawn for the lower

February 26, 2022 15:29 112-IJFCS 2250001

The Power of Machines That Control Experiments 107

boundary numbers `k, using an analogous procedure, splitting these numbers as

`k�k = xkyk, with |uk| = k − c and |yk| = c, where c is such that |y − rk| < 2c−k

and |y − `k| < 2c−k. We will denote the two bits of information that we need to

compute xk+1 from xk by bk2 and bk3. Thus the required advice function can be

given by:

f(n) =

`1�1#r1�1#σ1#`2�2#r2�2#σ2# . . . `n�n#rn�n#σn# n < k0

f(k0 − 1)##xk0#yk0#vk0#wk0#σk0 n = k0

f(n− 1)#bn2bn3#yn#bn0bn1#wn#σn n > k0.

(6)

Since wn and yn have constant size c for all n > k0, |f(n)| will be asymptotically

linear.

Following the proof of Proposition 14, but using function (6) instead, constructed

in the proof of Proposition 15, we are able to reduce the upper bound of infinite

precision, polynomially clocked SmSM’s, for time schedules in Ω(2k).

Proposition 16. If A is decided by a SmSM clocked in polynomial time with infinite

precision and exponential protocol T (k) ∈ Ω(2k), then A ∈ P/ log ?.

With Propositions 16 and 8, we immediately have the following Proposition:

Proposition 17. A is decided by a SmSM clocked in polynomial time with infinite

precision and exponential time schedule T (k) ∈ Ω(2k) if and only if A ∈ P/ log ?.

As it was noted in [2], it is an open problem to know if this proposition holds if

we consider that the time schedules considered are not in Ω
(
2k
)
.

4. Impact of Time Schedules

We will now focus on the study of the impact of time schedules on the computational

power of the SmSM clocked in polynomial time. The results reported in this section

complete the research undergone in [8], providing full proofs of the propositions left

unproved. For this purpose, we fix the position of the vertex of the SmSE to y = 1/2

and consider different classes of time schedules. Note that the vertex position could

be fixed at any computable value.

Definition 18. We denote by AP(f) the class of sets decidable by some SmSM clocked

in polynomial time, using the time schedule f : N → N, where f is an increasing

total function, infinite precision and vertex position y = 1/2 for the associated SmSE.

If F is a class of increasing total functions then AP (F) =
⋃
f∈F AP (f).

4.1. Fixing the curve

As we will see below, the class AP (F), for some set F of functions, depends on the

experimental time. In Propositions 20 and 22 we will be considering the following

equation for the experimental time, since we are merely interested in how fast texp

February 26, 2022 15:29 112-IJFCS 2250001

108 V. B. De Brito, J. F. Costa & D. Poças

grows as z approaches y:

texp(z) =
1

|z − y|
. (7)

Furthermore, since texp(rk) = texp(`k) = T (k) and y = 1/2, then

`k =
1

2
− 1

T (k)
and rk =

1

2
+

1

T (k)
. (8)

It is important to notice that although y = 1/2 is computable, the non-uniform

bounds of the computational power of the SmSM so far identified as P/poly, P/ log ?,

and P/ log2 ? do not collapse to P, because we can have non-computable time sched-

ules and so the boundary numbers still might not be computable implying that the

corresponding advice functions can also be non-computable.

Assuming we have an explicit formula for the experimental time, and further-

more that we have T (k), then it is apparent that we can compute `k�k, rk�k, and

σk. It is desirable not to impose this explicit equation on the experimental time in

order to prove more general versions of Propositions 22 and 20. There are therefore

two approaches to deal with these boundary values, one is where we have explicit

access to this time, and thus are able to compute `k and rk; another approach con-

sists in the case where the experimental time is implicit, in this case `k and rk are

not necessarily computable, however prefixes of these values can be used to obtain

the upper bounds, which is what we did in Proposition 19.

4.2. Boosting P/ log ?

Let IN denote the class of increasing total functions, CI the class of computable

increasing total functions, and TC the class of all strictly increasing time con-

structible functions. Since TC ⊂ CI ⊂ IN we can conclude that AP (TC) ⊆ AP (CI) ⊆
AP (IN). Note that for time schedules in CI or IN the SmSM may not count the

time it should wait for calls over the physical oracle internally, because time sched-

ules in these conditions are not time constructible in general. Nevertheless the SmSM

proceed in busy waiting until the end of the call. In this section we describe these

three classes in terms of non-uniform complexity. In particular, in Proposition 23

we show that any recursive set decidable by an oracle Turing machine running in

polynomial time by means of a tallyf oracle T , possibly non-decidable, can also be

decidable by another oracle Turing machine using some decidable tally oracle T ′.

Proposition 19. AP (IN) = P/poly.

Proof. ⊇. Let A ∈ P/poly. Polynomial advice Turing machines are polynomial

time equivalent to Turing machines with tally sets as oracles (see [3]). Hence there

fA tally set, also called unary language, is a subset of {0k : k ∈ N}. In other words, in a tally set
all words are comprised of 0’s.

February 26, 2022 15:29 112-IJFCS 2250001

The Power of Machines That Control Experiments 109

exists a tally set D such that A ∈ PD. Let M be the Turing machine clocked in

polynomial time p that witnesses this fact.

Consider the following time schedule:

T (k) =

{
2k + 1 if 0k ∈ D
2k if 0k /∈ D.

(9)

We can consider that this time schedule is originated by simulating a clock for

2k + 1. This simulation has disturbances induced by oracle D, forcing it to skip

one transition if 0k /∈ D, thus producing a procedure that effectively carries out

T (k) transitions and then halts. In addition, consider a sequence of words zk such

that |zk| = k and 2k < texp(zk) < 2k + 1. If such a sequence exists and we can

compute zk in polynomial time, then we can simulate calls to the oracle D using

an infinite precision SmSM with access to a SmSE with vertex position at y = 1/2,

cannon position at zk, and time schedule T given by Eq. (9), in the way specified

by Algorithm 3.g

The time to execute step 3 in the algorithm above is linear in k because the time

schedule T is also linear in k. Hence, step 2 aside, this simulation takes polynomial

time in k, with k being polynomial in the size of the input of M.

We now show how to compute these numbers zk. Given k, the sequence zk is

such that 2k < texp(zk) < 2k+ 1. Using the bounds on the experimental time given

by Eq. (7) we conclude that:

2k <
1

|zk − 1/2|
and

1

|zk − 1/2|
< 2k + 1. (10)

Choosing zk > 1/2, we get that 1
2 + 1

2k+1 < zk <
1
2 + 1

2k . If we choose large

enough values for k, then the difference between the lower and upper bounds of zk
is greater than 2.2−k. Thus, if we choose zk = (1

2 + 1
2k)�k − 2−k, we guarantee that

2k < texp(zk) < 2k + 1, with |zk| = k. We can, without loss of generality, admit

that there are only large enough elements in the tally set D.

⊆. We have that A ∈ AP(IN). Therefore, by Definition 18, there exists an infinite

precision SmSM M with vertex position y = 1/2 and time schedule T ∈ IN that

Algorithm 3 Simulating a call to tally oracle D

1: input ← 0k

2: compute zk
3: run the SmSE with cannon at zk; let s be the resulting state of the SmSM

4: if s = qt then resume the computation in state NO

5: else resume the computation in state YES

6: end if

gAlgorithm 3, line 4: timeout, hence T (k) = 2k and so 0k /∈ D. Algorithm 3, line 5: no timeout,
hence T (k) = 2k + 1 and so 0k ∈ D.

February 26, 2022 15:29 112-IJFCS 2250001

110 V. B. De Brito, J. F. Costa & D. Poças

decides A when clocked in polynomial time p. Consider an input w with |w| = n. On

a computation ofM on w, there can be at most p(n) calls to the SmSE. Hence, if we

are able to simulate these experiment calls in polynomial time, with a polynomial

size advice, then A ∈ P/poly.

The size of queries of M to the SmSE is bounded by p(n). Take the advice

function f , similar to the one defined in the proof of Proposition 14:

f(n) = `1�1#r1�1#σ1#`2�2#r2�2#σ2# · · ·#`p(n)�p(n)#rp(n)�p(n)#σp(n)#.
(11)

We have that f ∈ poly, because |f(n)| ∈ O(p2(n)). Additionally, given a query

of size k < p(n), we can extract `k�k, rk�k, and σk from f(n) in polynomial time in

n, and simulate the experiment in linear time in k, from Proposition 13. Therefore,

A ∈ P/poly.

Regarding the first part of the former proof, it is clear that limk→∞ zk = 1/2.

This is true since 1
2 + 1

2k+1 < zk < 1
2 + 1

2k , and we have that limk→∞
1

2k+1 =

limk→∞
1
2k = 0. But it is not at all intuitive how there can be a sequence of cannon

positions zk (of size k) that produce a sequence of linearly increasing values of

texp(zk), since texp increases exponentially in the number of bits of precision of the

queries. The only explanation is that zk converges very slowly to 1/2. Figure 3

helps to illustrate this fact, by showing the increase needed in k in order for zk to

obtain a new bit of 1/2, which appears to be exponential in the desired precision.

For example, z10 000 only coincides in its first 14 bits with 1/2.

The proposition above is a more general result than the one presented in [8],

because we removed the explicit experimental time (Eq. (7)) constraint.

It should be apparent from Proposition 19 that, even though we removed all

possible non-computability from the vertex position of the experiment, considering

non-computable time schedules allows to surpass the power of conventional infinite

precision SmSM’s, when clocked in polynomial time. Furthermore, when the schedule

is time constructible as in Proposition 20, all the sources of non-computability are

2000 4000 6000 8000 10000
k

2

4

6

8

10

12

14

bits of precision of z_k

Fig. 3. Precision of zk.

February 26, 2022 15:29 112-IJFCS 2250001

The Power of Machines That Control Experiments 111

stripped from the SmSM, which is why the power of these machines, when clocked in

polynomial time, drops to P.

Proposition 20. AP (TC) = P.

Proof. Suppose A ∈ P, then A is decidable in polynomial time by a deterministic

oracle Turing machine on help by the empty oracle. Thus A ∈ AP (TC) since no calls

are made.

If A ∈ AP (TC), then A is decidable by an analogue-digital machine M in

polynomial time using the physical oracle with vertex at position y = 1/2, working

with infinite precision, and an increasing time constructible function T as a time

schedule. We devise a deterministic machine M′ that, given an input of size n,

behaves like M and simulates any oracle query of size k in polynomial time. We

notice that given a query word of size k, it is possible to compute T (k) in polynomial

time since T is time constructible by assumption and there exists a polynomial p(n)

bounding the running time ofM, so we have T (k) < p(n). Then, it computes `k�k,

rk�k where `k, rk are the boundary numbers from Eq. (8). Finally, it compares

these value with the query word z of size k. The computation of `k�k, rk�k and the

comparison of z with these numbers can be done in polynomial time, so M′ also

decides A in polynomial time. It follows that A ∈ P.

Proposition 21. If A ∈ PD for some tally decidable set D, then A ∈ AP (CI).

Proof. Since A ∈ PD and D is tally, then A ∈ P/poly. Consider the same SmSM as

in the proof of Proposition 19, with time schedule T defined in Eq. (9). Since A ∈
P/poly, this SmSM decides A in polynomial time. Furthermore, T is a computable

function, because D ∈ REC. Therefore A ∈ AP (CI).

Proposition 22. AP (CI) ⊆ P/poly ∩ REC.

Proof. Let A ∈ AP (CI). Since AP (CI) ⊆ AP (IN) and AP (IN) = P/poly, we

conclude that A ∈ P/poly. We now show that A ∈ REC. Consider the SmSM machine

M and the computable time schedule T that witnesses A ∈ AP (CI). Similarly to

the previous proposition, we devise a deterministic Turing machine M′ such that,

for any k ∈ N it computes `k�k, rk�k where `k, rk are the boundary numbers from

Eq. (8). To decide A,M′ just has to simulateM and, using the fact that both T (k)

and texp are computable, wheneverM reaches a query state, it computes `k�k, rk�k
and compares the result with the query word. It follows that A ∈ REC.

The converse of Proposition 22 is not straightforward since, if a set A is decidable

by an oracle Turing machine clocked in polynomial time using an arbitrary tally set

T as oracle, then we cannot assume at once that T can be replaced by a recursive

tally set. To solve this open problem left on [8], and complete the proof of the lower

bound of AP (CI) (see Proposition 24), we will show now that given some recursive

February 26, 2022 15:29 112-IJFCS 2250001

112 V. B. De Brito, J. F. Costa & D. Poças

set A decidable by a deterministic oracle Turing machine bounded in polynomial

time using a non-recursive tally set as oracle, it is possible to obtain a recursive

tally set for which there exists another deterministic oracle Turing machine clocked

in polynomial time with that recursive oracle that can decide the same set A.

To prove the statement, first we need to order finite tally sets. More specifically,

we want to list them so that given some finite tally set we can perform a test on all

of its subsets. Let T = {0τ1 , 0τ2 , . . . } be a tally set with τm < τn whenever m < n.

We can order the finite subsets of T using the following enumeration e:

• e(∅) = 0; e(ε) = 1;

• e({0k1 , 0k2 , . . . , 0kn}) =
∑n
i=1 2ki .

It easy to show that this enumeration is actually a bijection between N and the

class of finite tally sets since we can simply represent these sets as a list of the

form {k1, . . . , kn}. Therefore, if we want to perform some test on all subsets of some

tally T up to a fixed word size n, we compute e−1(0), e−1(1), e−1(2), . . . , e−1(2n)

disregarding sets that are not subsets of T . The enumeration is also monotonic in

the sense that if A ⊂ B then e(A) < e(B). In particular, if T is itself finite, then

ordering its subsets can be done in finite time as we only need to compute at most

e(T) subsets. The overall complexity of ordering the subsets of T is not relevant

as we only intend to use this ordering in the proof of Proposition 23 to show that

some tally set is recursive. Let Si = e−1(i) denote the tally set encoded by i ∈ N.

Proposition 23. If A ∈ P/poly ∩ REC, then A ∈ PT
′

for some recursive tally

set T ′.

Proof. Let A ∈ P/poly ∩ REC and M the Turing Machine that witnesses the fact

that A ∈ REC. Furthermore, since A ∈ P/poly =
⋃
T∈tally P

T , we conclude that

A ∈ PT for some tally set T . We will now construct a recursive tally set T ′ such

that A ∈ PT ′
.

Let M′ be the oracle Turing machine bounded in polynomial time nk that

decides A with oracle T ⊆ 0?. We assume that only 0’s are written in the query

tape and notice that the biggest word that might be queried to the oracle is 0|w|
k

,

where w is the input, since the running time is bounded by nk and the machine can

write at most one 0 per transition. Consider the function

f(n) = 1 +

n−1∑
i=1

(ri + 1). (12)

We construct a recursive tally set T ′ in the following way: for each i ∈ N we

choose the least ζi such that M′ working with oracle Sζi agrees with M in every

input with size i.h Such an index ζi must exist because we know that in the worst

hIt is not needed to agree in inputs of different sizes since M′′ is built to consult a different Sζi
for each input size.

February 26, 2022 15:29 112-IJFCS 2250001

The Power of Machines That Control Experiments 113

case scenario we can stop testing tally sets when Sζi contains the (finite number

of) words in T that are needed for answering queries when the input has size i. We

then define

T ′i = {0f(i)y : y ∈ Sζi} and T ′ =

∞⋃
i=0

T ′i .

We want to show that T ′ is a recursive tally set such that A ∈ PT
′
. T ′ is clearly

a tally set because for every i ∈ N we have that Sζi is a tally set. To show that

A ∈ PT
′
, we devise a machine M′′ according to Algorithm 4.

M′′ simulates the computation of M′; however, whenever M′ enters the query

state, M′′ pads the query word with f(|w|) 0’s and performs its own call to T ′,

proceeding as ifM′ would have the same answer. The only detail that could prevent

M′′ from running in polynomial time was if the padding of the query words could

not be done in a polynomial number of steps. This is not a problem since f(n) is a

polynomial of degree k which is fixed byM′, thereforeM′′ decides A in polynomial

time with the help of oracle T ′.

The function f(n) used as a padding function grows fast enough to separate the

words queried to T ′ for each input size: for any input w, the biggest word thatM′′
can write in the query tape has size f(|w|) + |w|k which is smaller than f(|w|+ 1),

which is the size of the smallest word than can be queried to the oracle with an

Algorithm 4

1: procedure M′′
2: w ← input

3: n← |w|
4: s′ ← Start state of M′ on input w . state of M′
5: s′′ ← s′ . state of M′′
6: loop:

7: if s′ = halting state then return output of M′
8: end if

9: if s′ 6= query state then

10: s′ ← newt state of M′ . continue the computation

11: s′′ ← s′ . updating the state of M′′
12: else

13: y ← word in query tape of M′
14: p← f(n) . number of 0’s to pad

15: w ← 0p · y . padding the word

16: s′′ ← result of asking w to T ′ . simulating the oracle on M′′
17: s′ ← s′′ . continue the computation as M′
18: end if

19: end loop

20: end procedure

February 26, 2022 15:29 112-IJFCS 2250001

114 V. B. De Brito, J. F. Costa & D. Poças

input with size |w| + 1. In other words, if T ′im and T ′iM are the smallest and the

biggest word M′′ can write in the query tape for an input of size i, then we have

|T ′1m | ≤ |T
′
1M | < |T

′
2m | ≤ |T

′
2M | < · · · .

In particular, for every i 6= j we have T ′i ∩T ′j = ∅. It is also important to notice that

∪ni=1T
′
i is a strict subset of ∪n+1

i=1 T
′
i since we can only add words that are larger than

the ones we already have. We need the padding function to have this characteristic

because there can be the case that the same tally word is asked byM′ with inputs

of different sizes. This raises a problem when building T ′ because we would have to

append a word that could not be in T ′ or vice-versa.

Algorithm 5

1: procedure Search of S`i
2: i← input

3: A← ∅
4: m← 2i . 0i is the (2i)th word in lexicographic order

5: while m ≤ 2i+1 − 1 do . 1i is the (2i+1 − 1)th word in lexicographic order

6: w′ ← mth word in lexicographic order

7: if M accepts w′ then

8: A← A ∪ {w′}
9: end if

10: m← m+ 1

11: end while

12: l← 0

13: bool← false

14: while bool == false do

15: j ← 2i

16: A′ ← ∅
17: l← l + 1

18: while j ≤ 2i+1 − 1 do

19: w′′ ← jth word in lexicographic order

20: if M′Sl
accepts w′′ then . M′

Sl
is the machineM′ working with oracle Sl

21: A′ ← A′ ∪ {w′′}
22: end if

23: end while

24: if A == A′ then

25: bool← true

26: end if

27: end while

28: output Sl
29: end procedure

February 26, 2022 15:29 112-IJFCS 2250001

The Power of Machines That Control Experiments 115

It remains to be shown that T ′ is recursive. Given a tally word y′, we can rewrite

it as y′ = 0f(i)y with the largest possible i ∈ N; in this way, i and y are unique since

we have T ′i ∩ T ′j = ∅ for i 6= j. We search for the respective Sζ|w| using Algorithm 5

and by definition of T ′, we have that y′ ∈ T ′ if and only if y ∈ Sζ|w| .

Proposition 24. P/poly ∩ REC ⊆ AP (CI).

Proof. Let A ∈ P/poly ∩ REC. We can assume that A is decidable in polynomial

time by a Turing machine using some tally set D as advice. Furthermore, by Propo-

sition 23 we can assume that D is recursive. Consider again the time schedule

T (k) =

{
2k + 1, if 0k ∈ D
2k, if 0k /∈ D.

A similar reasoning to the one used in the proof of Proposition 19 shows that A can

be decided in polynomial time by a SmSM using the physical oracle with unknown

y = 1/2, infinite precision, and time schedule T . The only detail that differs is that

D is recursive and therefore T is a total computable function.

Proposition 25. AP (CI) = P/poly ∩ REC.

Proof. It follows directly from Propositions 22 and 24.

5. Conclusion

In previous papers, we have shown that machines that control experiments can

decide in polynomial time the sets in non-uniform complexity classes that mix

the central complexity classes P, PSPACE, and BPP with polynomial or logarithmic

long advices. In [18] we uncover three types of experiments of measurement in

Physics. Some values can be measured by successive approximations, approaching

the unknown value by dyadic rationals above and below that value (see [14] for a

universal measurement algorithm). Fundamental measurement of distance, angle,

mass, etc., fall into this class. A second type of experiment was considered, e.g.,

the measurement of the threshold of a neuron in [7]. We can approach the desired

value only from below the threshold. A third type of measurement was very recently

discussed in [9].

The complexity classes characterised thus far are summarized in the Tables 1

and 2, for polynomial time and polynomial space bounds, respectively. Table 1

pictures the table of complexity classes of polynomial time Turing machines with

different types of experiments as described above, considered with different concepts

of precision and time tolerance. Two-sided experiments have been considered in

[4, 5, 13, 14, 16, 17] and threshold experiments in [6, 7]. In the table “w/exponential

time” stands for time of consultation exponential in the size of the query. Table 2

shows complexity classes of polynomial space Turing machines with different types

of experiments (see [1]).

February 26, 2022 15:29 112-IJFCS 2250001

116 V. B. De Brito, J. F. Costa & D. Poças

Table 1.

Type of Oracle Infinite Unbounded Finite

lower bound P/ log ? BPP/ log ? BPP/ log ?

Two-sided upper bound P/poly P/poly P/poly
upper bound (w/ exponential T) — — —

lower bound P/ log ? BPP/ log ? BPP/ log ?
Threshold upper bound — — —

upper bound (w/ exponential T) P/ log ? BPP/ log ? BPP/ log ?

lower bound P/poly P/poly BPP/ log ?
Vanishing Type 1 upper bound P/poly P/poly BPP/ log ?

(Parallel) upper bound (w/ exponential T) — — —

lower bound P/ log ? BPP/ log ? BPP/ log ?

Vanishing Type 2 upper bound P/poly P/poly BPP/ log ?
(Clock) upper bound (w/ exponential T) — BPP/ log ? —

Table 2.

Infinite Arbitrary Fixed

Lower Bound PSPACE/poly BPPSPACE/poly BPPSPACE/poly
with time schedule

Lower Bound 2{0,1}
?

2{0,1}
?

—
without time schedule

Upper Bound 2{0,1}
?

2{0,1}
?

BPPSPACE/poly

In this paper, we proved that the relevant classes P, P/poly, and P/poly ∩
REC can be characterised by the same SmSM machines considered in our previous

investigation, controlling experiments in polynomial time as before, but now with

protocols exhibiting non-computable time schedules. In other words, although the

digital part of the SmSM’s are standard Turing machines and the analog components

are simulable on a Turing machine (since the vertices are placed at computable

positions and the experimental time is computable), the non-computability arises

from the non-controllable time interface between the digital and analog components

of the SmSM machine. Although non-computability is expected in this case, is not

straightforward that the computational power of the SmSM are the same as with

computable protocols and non-simulable analog components.

Acknowledgements

The research of José Félix Costa is supported by FCT — Fundação para a

Ciência e a Tecnologia, I.P., namely in the context of the I&D research unit

February 26, 2022 15:29 112-IJFCS 2250001

The Power of Machines That Control Experiments 117

CFCUL — Centro de Filosofia das Ciências da Universidade de Lisboa, project

FCT I.P.: UIDB/00678/2020 and UIDP/00678/2020. The research of Diogo Poças

is supported by FCT via LASIGE Research Unit, ref. UIDB/00408/2020. We also

thank to the anonymous referee.

References

[1] J. Aĺırio, J. F. Costa and L. Fonseca, Scatter machines bounded in space, in Handbook
of Unconventional Computing, Volume 1 (Theory), ed. A. Adamatzky, Chapter 3
(World Scientific, Singapore, 2021), pp. 59–97.

[2] T. Ambaram, E. Beggs, J. F. Costa, D. Poças and J. V. Tucker, An analogue-digital
model of computation: Turing machines with physical oracles, in Advances in Uncon-
ventional Computing, Volume 1 (Theory), ed. A. Adamatzky, Emergence, Complexity
and Computation, Vol. 22 (Springer, 2016), pp. 73–115.

[3] J. L. Balcázar, J. Dı́as and J. Gabarró, Structural Complexity I, 2nd edn. (Springer-
Verlag, 1988, 1995).

[4] E. Beggs, J. F. Costa, B. Loff and J. V. Tucker, Computational complexity with
experiments as oracles, Proc. Royal Society, Series A (Mathematical, Physical and
Engineering Sciences) 464(2098) (2008) 2777–2801.

[5] E. Beggs, J. F. Costa, B. Loff and J. V. Tucker, Computational complexity with
experiments as oracles II. Upper bounds, Proc. Royal Society, Series A (Mathematical,
Physical and Engineering Sciences) 465(2105) (2009) 1453–1465.

[6] E. Beggs, J. F. Costa, D. Poças and J. V. Tucker, On the power of threshold measure-
ments as oracles, in Unconventional Computation and Natural Computation (UCNC
2013), eds. G. Mauri, A. Dennunzio, L. Manzoni and A. E. Porreca, Lecture Notes
in Computer Science, Vol. 7956 (Springer, 2013), pp. 6–18.

[7] E. Beggs, J. F. Costa, D. Poças and J. V. Tucker, Oracles that measure thresholds:
The Turing machine and the broken balance, J. Logic Comput. 23(6) (2013) 1155–
1181.

[8] E. Beggs, J. F. Costa, D. Poças and J. V. Tucker, An analogue-digital Church–Turing
thesis, Int. J. Found. Comput. Sci. 25(4) (2014) 373–389.

[9] E. Beggs, J. F. Costa, D. Poças and J. V. Tucker, Computations with oracles that
measure vanishing quantities, Math. Struct. Comput. Sci. 23(6) (2017) 1155–1181.

[10] E. Beggs, P. Cortez, J. F. Costa and J. V. Tucker, A hierarchy for BPP//log* based on
counting calls to an oracle, in Emergent Computation (Festschrift for Selim Akl), ed.
A. Adamatzky, Emergence, Complexity and Computation, Vol. 21 (Springer, 2016),
pp. 39–56.

[11] E. Beggs, P. Cortez, J. F. Costa and J. V. Tucker, Classifying the computational
power of stochastic physical oracles, Int. J. Unconvent. Comput. 14(1) (2018) 59–90.

[12] E. Beggs, J. F. Costa and J. V. Tucker, Computational models of measurement
and Hempel’s axiomatization, in Causality, Meaningful Complexity and Knowledge
Construction, ed. A. Carsetti, Theory and Decision Library A, Vol. 46 (Springer,
2010), pp. 155–184.

[13] E. Beggs, J. F. Costa and J. V. Tucker, Physical oracles: The Turing machine and
the Wheatstone bridge, Studia Logica 95(1–2) (2010) 279–300.

[14] E. Beggs, J. F. Costa and J. V. Tucker, Limits to measurement in experiments gov-
erned by algorithms, Math. Struct. Comput. Sci. 20(6) (2010) 1019–1050.

[15] E. Beggs, J. F. Costa and J. V. Tucker, The Turing machine and the uncertainty in
the measurement process, in Physics and Computation, P&C 2010, ed. H. Guerra,

February 26, 2022 15:29 112-IJFCS 2250001

118 V. B. De Brito, J. F. Costa & D. Poças

CMATI — Centre for Applied Mathematics and Information Technology (University
of Azores, 2010), pp. 62–72.

[16] E. Beggs, J. F. Costa and J. V. Tucker, The impact of models of a physical oracle on
computational power, Math. Struct. Comput. Sci. 22(5) (2012) 853–879.

[17] E. Beggs, J. F. Costa and J. V. Tucker, Axiomatising physical experiments as ora-
cles to algorithms, Philosoph. Trans. Roy. Soc. Series A (Math. Phys. Engin. Sci.)
370(12) (2012) 3359–3384.

[18] E. Beggs, J. F. Costa and J. V. Tucker, Three forms of physical measurement and
their computability, Rev. Symbol. Logic 7(4) (2014) 618–646.

[19] G. A. Bekey and W. J. Karplus, Hybrid Computation (John Wiley & Sons, Inc.,
1968).

[20] M. Davis, The myth of hypercomputation, in Alan Turing : The Life and Legacy of a
Great Thinker, ed. C. Teuscher (Springer, 2006), pp. 195–212.

[21] M. Davis, Why there is no such discipline as hypercomputation, Appl. Math. Comput.
178(1) (2006) 4–7.

[22] R. Carnap, Philosophical Foundations of Physics (Basic Books, 1966).
[23] R. Geroch and J. B. Hartle, Computability and physical theories, Foundations of

Physics 16(6) (1986) 533–550.
[24] C. G. Hempel, Fundamentals of concept formation in empirical science, Int. Ency-

clopedia of Unified Science 2(7) (1952).
[25] H. T. Siegelmann, Computation beyond the Turing limit, Science (1995) 545–548.
[26] H. T. Siegelmann, Neural Networks and Analog Computation: Beyond the Turing

Limit (Birkhäuser, 1999).
[27] H. T. Siegelmann and E. D. Sontag, Analog computation via neural networks, The-

oret. Comput. Sci. 131(2) (1994) 331–360.
[28] H. T. Siegelmann and E. D. Sontag, On the computational power of neural networks,

J. Comp. Syst. Sci. 50(1) (1995) 132–150.
[29] D. H. Krantz, P. Suppes, R. Duncan Luce and A. Tversky, Foundations of Measure-

ment (Dover, 2009).
[30] J. von Neumann, Probabilistic logics and the synpaper of reliable organisms from

unreliable components, in Automata Studies (Princeton University Press, 1956),
pp. 43–98.

[31] A. Steven Younger, E. Redd, H. Siegelmann and C. Bell, A physical machine based
on a super-Turing computational model (2017).

