
Tracking computability of GPAC-generable
functions

DIOGO POÇAS, LASIGE, Departamento de Informática, Faculdade de Ciências,
Universidade de Lisboa, 1749-016 Lisbon, Portugal.
E-mail: dmpocas@fc.ul.pt

JEFFERY ZUCKER, Department of Computing and Software, McMaster
University, Hamilton, ON, L8S4K1, Canada.

Abstract
Analog computation attempts to capture any type of computation, that can be realized by any type of physical system or
physical process, including but not limited to computation over continuous measurable quantities. A pioneering model is the
General Purpose Analog Computer (GPAC), initially presented by Shannon in 1941. The GPAC is capable of manipulating
real-valued data streams; however, it has been shown to be strictly less powerful than other models of computation on the
reals, such as computable analysis.

In previous work, we proposed an extension of the Shannon GPAC, denoted LGPAC, designed to overcome its limitations.
Not only is the LGPAC model capable of expressing computation over general data spaces X , but it also directly incorporates
approximating computations by means of a limit module. An important feature of this work is the generalisation of the
framework of the computation theory from Banach to Fréchet spaces.

In this paper, we compare the LGPAC with a digital model of computation based on effective representations (tracking
computability). We establish general conditions under which LGPAC-generable functions are tracking computable.

Keywords: generalized computability, generalized recursion theory, computation on the reals, analog computation, Shannon
GPAC, tracking computability

1 Introduction

A central goal in computability theory is to establish equivalences between disparate notions of
computation; such equivalence results serve as strong indications of the validity of the theory as a
whole, as they suggest robustness (or perhaps, indifference) against the choice of a particular model
of computation.

In the framework of digital computation, such considerations have led to the celebrated Church–
Turing thesis that asserts that any realizable method of computation has the same computational
power as the Turing machine. However, the picture is not so clear in the case of computation over
more general data spaces, or analog computation. Analog computation, as conceived by Kelvin [21],
Bush [2] and Hartree [6], is a form of experimental computation with physical systems called analog
devices or analog computers. Historically, data are represented by measurable physical quantities,
including lengths, shaft rotation, voltage, current, resistance, etc.

The General Purpose Analog Computer (GPAC) was introduced by Shannon [17] as a model of
Bush’s Differential Analyzer [2]. Shannon discovered that a function can be generated by a GPAC if,
and only if, it is differentially algebraic. In particular, this implies that non-differentially algebraic
functions, such as the gamma function, cannot be generated by the Shannon GPAC.

Vol. 00, No. 0, © The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please
e-mail: journals.permission@oup.com.

doi:10.1093/logcom/exaa081

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

2 Tracking computability of GPAC-generable functions

In previous works [11, 13], we proposed different extensions of the Shannon GPAC, attempting
to overcome its limitations. In particular, our models express computation over general data spaces
X beyond real numbers and directly incorporate approximating computations by means of a limit
module. The goal of this paper is to connect the LGPAC (GPAC + limits) with other such models of
computation. Specifically, we shall consider the notion of tracking computability [19, 22], which we
take as a paradigm for digital computation. The idea of tracking computability comes from Mal’cev
[10], and it has been found to be equivalent (under reasonable conditions) to a number of other well-
known digital computation models [19, 20, 22, 24]. In this work, we find suitable conditions that
guarantee that a function generated by an LGPAC is also tracking computable.

We begin by introducing both notions of computability: for the GPAC model, we describe the
channels, modules, input-output operator and fixed point semantics; for tracking computability, we
study computable structures and effective representations. In the most technical part of the paper,
we prove tracking computability of the functions associated with the LGPAC modules and of the
input-output operator of an LGPAC. Finally, we attempt to prove tracking computability of LGPAC-
generable functions; in order to achieve this, we assume an additional condition, which we call
effective well-posedness.

This research is part of a project to compare the strengths of various models of analog and digital
computation. In the present case (LGPAC and tracking computability) we have been successful in
one direction, while the other direction remains an open problem. An important feature of this paper
is the use of Fréchet spaces as a framework for computation theory on the reals. The significance of
this is given in Remarks 2.1 and 3.1 below.

In regard to the original content of this paper, we remark that the paper [1] already shows an
equivalence between a GPAC-like model for real computation (which includes approximability) and
computable analysis (which is closely related to tracking computability; papers [22] and [23] have
some equivalence results). However, our model differs from the model in that paper in two critical
ways: computation on general data spaces is allowed, and approximability is directly incorporated by
means of limit modules. Hence, the two models are not obviously comparable. The technical notion
of effective well-posedness (Definition 6.2) is also an original idea.

2 Preliminaries

Our model of computation is built over a data space X which represents the space of possible data
points. Typical spaces of interest are R (the real numbers), C(R) (continuous real functions of one
real variable), C1(R) (continuously differentiable real functions) and so on. The results in this paper
will be stated for separable Fréchet spaces, which satisfy the following assumptions.1

1. X is a Fréchet space with respect to a family of pseudonorms ‖ · ‖n (indexed by n ∈ N); in
particular, it is equipped with the vector space operations of addition and scalar multiplication,
as well as a zero element 0 ∈ X . We recall the pseudonorm axioms:

1a. each pseudonorm ‖ · ‖n : X → R≥0 is positive semidefinite (‖x‖n ≥ 0), scalable (‖rx‖n =
|r|‖x‖n for r ∈ R) and subadditive (‖x + y‖n ≤ ‖x‖n + ‖y‖n);

1b. the family of pseudonorms separates points: if ‖x − y‖n = 0 for all n, then x = y;
1c. X is complete, that is, Cauchy sequences are convergent: for any sequence (xm) ∈ XN, if

lims,t→∞ ‖xs − xt‖n = 0 for all n, then there exists x ∈ X such that lims→∞ ‖xs − x‖n = 0;

1A detailed exposition of Fréchet spaces can be found in [15, Ch. V].

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

Tracking computability of GPAC-generable functions 3

1d. for convenience, we additionally assume without loss of generality that the pseudonorms are
nondecreasing: if n ≤ m then ‖x‖n ≤ ‖x‖m.

2. Finally, X is separable, i.e. it has a countable dense subset. We fix an enumeration αX : N →
Xc of a countable dense subset Xc = αX (N) ⊆ X . We also assume for convenience that
αX (0) = 0.

REMARK 2.1
(The use of Fréchet spaces).
An important aspect of the present work lies in the generalisation of the framework for the study
of computation theory on the reals, from Banach spaces [7, 13, 18, 20, 22] to Fréchet spaces.2

The significance of this lies in the fact that some well-known models of analog computation, such
as C(R) or Cn(T, C(R)) (n = 0, 1, 2, . . .), are not Banach spaces but Fréchet spaces (see also
Remark 3.1).

Note that the family of pseudonorms on a Fréchet space induces a metric as follows.

DEFINITION 2.2
(Metric from pseudonorms).
Let X be a Fréchet space with pseudonorms ‖ · ‖n, n ∈ N. We define the metric

d(x, y) = sup
n∈N

2−n min (‖x − y‖n, 1) , x, y ∈ X . (1)

PROPOSITION 2.3
(Bounds on the pseudonorms and bounds on the metric).
Let X be a Fréchet space with pseudonorms ‖ · ‖n, n ∈ N. Then for the metric defined by (1), the
following hold for any x, y ∈ X and n, m ∈ N:

if d(x, y) < 2−n−m, then ‖x − y‖n < 2−m;

if ‖x − y‖n < 2−m, then d(x, y) < 2− min(n,m).

3 The LGPAC

We give a formal definition of the LGPAC model.3 The main objects of our study are analog networks
or analog systems, whose main components can be viewed as follows:

Analog network = data + time + channels + modules.
As already mentioned, we model data as elements of a separable Fréchet space X . We will use

the nonnegative real numbers as a continuous model of time T = [0, ∞). We consider two types of
channels: scalar channels carry constant values in X , whereas stream channels carry continuously
differentiable streams in C1(T,X).

REMARK 3.1
(Generation of Fréchet spaces).
If X is a Fréchet space, so is C1(T,X); this however does not hold in general for Banach spaces,
which again explains our use of Fréchet spaces (see Remark 2.1). In particular, we can define the

2Fréchet spaces were used in this connection in the first author’s doctoral thesis [12] and papers based on it [11, 13]
including the present paper.

3More details can be found in [11, 13].

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

4 Tracking computability of GPAC-generable functions

following family of nondecreasing pseudonorms on C1(T,X),4

‖u‖n = ‖u(0)‖n + sup
0≤t≤n

‖u′(t)‖n. (2)

This gives a metric (by Defintion 2.2) and hence a topology for C1(T,X) and the spaces I, M, O
used in Definition 3.5.

Note that many useful properties of integration can be extended to C1(T,X); in particular, for
u ∈ C1(T,X), ν ∈ N and t ∈ [0, ν], we have the bound (which we will use later)

‖u(t)‖ν ≤ ‖u(0)‖ν +
∫ t

0
‖u′(s)‖νds ≤ ‖u(0)‖ν + t sup

t≤ν
‖u′(t)‖ν ≤ ν‖u‖ν . (3)

Each module M has zero, one or more input channels, and must have a single output channel; thus,
it can be specified by a (possibly partially defined) stream function

FM : A1 × . . . × Ak ⇀ Ak+1 (k ≥ 0),

where each of Ai, i = 1 . . . k + 1 is either Xi or C1(T,Xi) for some data space Xi; and we use the
symbol ⇀ to mean that FM may be partial-valued. The Shannon GPAC is obtained if all Xi = R,
and the following four types of modules are considered.

DEFINITION 3.2
(Shannon modules).
The Shannon modules are defined as follows:

– for each c ∈ R, there is a constant module with zero inputs and one output v(t) = c;
– the adder module has two inputs u, v and one output w, given by w(t) = u(t) + v(t);
– the multiplier module has two inputs u, v and one output w, given by w(t) = u(t)v(t);
– the integrator module has a scalar input c (also called the initial setting), two stream inputs u,

v and one output w, given by the Riemann–Stieltjes integral w(t) = c + ∫ t
0 u(s)v′(s)ds.

We have previously extended the Shannon GPAC in two different ways.
1. General data spaces. In [13] we defined the X -GPAC, allowing the study of functions of

more than one variable. The main idea present in that paper is to extend the output space, that is,
replacing C1(T,R) with C1(T,X), where X is a metric vector space. For example, we can think of
X as the space of continuous real-valued functions on Rn, that is, X = C(Rn,R). In this way, our
channels will now carry X -valued streams of data u : T → X , which correspond to functions of
n + 1 real variables, under the ‘uncurrying’ T → (Rn → R)
 T × Rn → R. Evidently, one of
the independent variables, namely ‘time’, plays a different role from the others—it can be used as a
variable for integration and taking limits.

This leads us to consider a multityped GPAC, which means that different channels may carry
values over different data spaces. In particular, we shall fix one separable Fréchet space X and allow
four channel types: R-variables, X -variables, R-streams and X -streams, which carry values in R,
X , C1(T,R) and C1(T,X), respectively.

4Here, assumption (1d), that the original family of pseudonorms on X is nondecreasing, is required; alternatively, one
could introduce a double-indexing family such as ‖u‖n,m = ‖u(0)‖n + sup0≤t≤m ‖u′(t)‖n.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

Tracking computability of GPAC-generable functions 5

FIGURE 1. The four basic modules.

We generalize the Shannon modules to C1(T,X), obtaining the four basic modules depicted in

Fig 1 as box diagrams.5 We also introduce the symbol ‘ ’ to denote the operator associated with the

integrator module; we can then write (c, u, r) = c + ∫
udr.

Observe that we are using scalar multiplication (of type R × X → X) as the basis for the
multiplication and integrator modules. At this level of generality, we cannot use multiplication (of
type X ×X → X) because such an operation does not arise from the Fréchet space axioms. One can
extend our model, assuming X is equipped with a multiplication operator, under suitable additional
assumptions: of course, multiplication should be bilinear (i.e. distributive with respect to addition,
and compatible with scalar multiplication), but more importantly, it should be bounded (e.g. one
could assume ‖u × v‖ν ≤ ‖u‖ν‖v‖ν for each pseudonorm ν). In Section 7, we will consider the case
X = C(R) and extend the GPAC with a function multiplication module.

2. Limit modules. We introduced in [11] a limit module in order to incorporate approximating
computations by means of effective convergence. If M : N → N is nondecreasing and (gn) ∈ XN,
we say that (gn) is an M-convergent Cauchy sequence if for all ν ∈ N and m, n ≥ M(ν)

one has d(gm, gn) < 2−ν . Similarly, if T ∈ C1(T,R) is nondecreasing and u ∈ C1(T,X),
we say that u is a T-convergent Cauchy stream if for all τ ∈ T and s, t ≥ T(τ) one has
d(u(s), u(t)) < 2−τ .

We call such a non-decreasing function M (resp. T) a discrete (resp. continuous) modulus
of convergence. A typical example is the identity function, either discrete (id : N → N) or
continuous (id ∈ C1(T,R)). We note that any M-convergent Cauchy sequence may be replaced by an
id-convergent Cauchy sequence via a composition with its modulus of convergence. Similarly, a
T-convergent Cauchy stream may be replaced by an id-convergent Cauchy stream. This brings us to
the notion of a limit operator.

5By assumption, addition and scalar multiplication are defined on X . The integral can be generalized to C1(T,X) via
Riemann sums: see, e.g. [16, p.89].

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

6 Tracking computability of GPAC-generable functions

FIGURE 2. The limit module.

DEFINITION 3.3
(Limit modules).
For the data type X , there is a continuous limit module with one input of type C1(T,X) and one
output of type X . For input u, it outputs the id-convergent limit limt→∞ u(t) (if it exists).

Observe that the limit module defines a partial-valued operator; it is only defined for those
functions in C1(T,X) that have an id-convergent limit.

DEFINITION 3.4
(LGPAC).
Let X be a separable Fréchet space. A limit general purpose analog computer (LGPAC) is a
network built with R-channels, X -channels (carrying either constants or streams), the basic modules
(constants, adders, multipliers, integrators) and the continuous limit module. Moreover, the channels
connect the inputs and outputs of the modules, with the following restrictions: the only connections
allowed are between an output and an input; each input may be connected to either zero or one
output.

Thus, a GPAC channel may appear as an unconnected input (proper input), unconnected output
(proper output), or connect an input with an output (mixed input/output).

DEFINITION 3.5
(LGPAC semantics, [13]).
Any LGPAC G induces an input–output operator Φ : I × M ⇀ M × O, where I, M, O denote
the spaces of proper input, mixed input/output and proper output channels, respectively;

1. for variables uI ∈ I, uM ∈ M, uO ∈ O, the fixed point equation is given by

Φ(uI , uM) = (uM , uO); (4)

2. G is well-posed on an open subset U ⊆ I if for all uI ∈ U there is a unique (uM , uO) such
that (4) holds; and moreover, the solution map uI �→ (uM , uO) describes a continuous function
F : U → M × O with domain U ; we further say that G generates F, or that F is LGPAC-
generable.

Although Definitions 3.4 and 3.5 refer to networks built with the LGPAC modules, it is not hard
to see how they generalize to any choice of arbitrary modules, which would define a more abstract
notion of multityped GPAC. Some of our results (namely Lemma 5.1) can be stated in this more
general form.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

Tracking computability of GPAC-generable functions 7

4 Tracking computability

The procedure for defining tracking computability in general spaces has been extensively docu-
mented by many authors (see, e.g. [19, 20, 23, 24]). The basic construction consists of taking an
enumeration of a countable dense subset, defining computable elements as those given by effective
Cauchy sequences, and considering tracking functions. We assume that we have fixed an enumeration
αX : N → Xc of a (countable) dense subset Xc ⊆ X .

Let us also fix a family of computable bijections 〈·, · · · , ·〉 : Nk → N, for k ∈ N+ (say, the
Cantor pairing function 〈·, ·〉 for k = 2 and its generalizations to higher dimensions), as well as an
enumeration {·} : N → (N ⇀ N) of the recursive functions (say, for T ∈ N the encoding of a
one-input, one-output Turing machine, {T} is the corresponding recursive function).

DEFINITION 4.1
(Computability structure).
Let X be a complete metric space and (Xc, α) an enumerated countable dense subset. A computabil-
ity structure (Ωᾱ , Cᾱ , ᾱ) is defined as follows.

1. The set of valid codes, Ωᾱ , is the subset of N given by encodings of pairs of numbers
c = 〈T , M〉 such that T is the index for a total recursive function {T}, M is the index for
a total recursive discrete modulus of convergence {M} and (α{T}(n)) is an {M}-convergent
Cauchy sequence.6

2. The partial enumeration ᾱ : N ⇀ X is the function with domain Ωᾱ such that for any
c = 〈T , M〉 ∈ Ωᾱ , ᾱ(c) = limn→∞ α{T}(n).

3. The set of computable elements Cᾱ ⊆ X is the range of ᾱ, i.e. Cᾱ = ᾱ(N).

EXAMPLE 4.2
(Computability on R).
To construct a computability structure on the space X = R, we can take Xc = Q, and α = αR as
any standard enumeration of the rationals. This gives the set Cᾱ of computable reals.

EXAMPLE 4.3
(Computability on C(R)).
We define a computability structure on X = C(R), which is a Fréchet space with pseudonorms
‖f ‖n = sup−n≤x≤n |f (x)|. We take Xc to be a countable subset of piecewise linear rational functions,
defined as follows. For each N ∈ N and each tuple (p−N2 , . . . , p−1, p0, p1, . . . , pN2) of 2N2 + 1
rational numbers, we can consider a function f : R → R such that f (x) = p−N2 for x ≤ −N ,
f (x) = pN2 for x ≥ N ; f (j/N) = pj for j ∈ {−N2, . . . , 0, . . . , N2} and f is piecewise linear on each
interval [j/N , (j + 1)/N] for j ∈ {−N2, . . . , 0, . . . , N2 − 1}.

In this way, the role of N is both to increase the ‘window size’ and decrease the ‘step size’ of
our approximation (see Fig 3). By using the bijections of type N2 → N and N2N2+1 → N, and
the enumeration αR from the previous example, we can define an enumeration αX : N → Xc.
Specifically, the enumeration is as follows: for e = 〈N , 〈m−N2 , . . . , mN2〉〉, we define αX (e)
to be the stream u built from N and the tuple (p−N2 , . . . , pN2) where pj = αR(mj) for each

6For ease of notation we write α{T}(n) instead of α({T}(n)).

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

8 Tracking computability of GPAC-generable functions

Figure 3. A piecewise linear rational function.

j ∈ {−N2, . . . , 0, . . . , N2}. Finally, we can apply the construction of Definition 4.1 and consider the
set of computable elements Cᾱ . In this case, this set coincides with the familiar set of computable
real functions, as seen in [14, 25], among others.

EXAMPLE 4.4
(Computability on C1(T,X)).
Given a computability structure on a separable Fréchet space X , say with an enumeration (αX ,Xc),
we shall construct a computability structure on the space of X -streams Z = C1(T,X). We apply
the same idea as in Example 4.3, but now we need to account for continuous differentiability. The
idea is to construct an interpolant from a finite amount of ‘data points’. If u ∈ C1(T,X) then it has
a derivative u′ ∈ C(T,X). Therefore, we can approximate u′ by a piecewise linear function and then
integrate the approximation with respect to the time variable.

Formally, for each N ∈ N and each tuple (x0, y0, . . . , yN2) of N2 + 2 elements in Xc, we consider
the functions u, v : T → X such that: v(t) = yN2 for t ≥ N ; v(j/N) = yj for j ∈ {0, . . . , N2}; v is
piecewise linear (as a function of t) and given by v(t) = yj + (yj+1 − yj)(Nt − j) on each interval
[j/N , (j + 1)/N], for j ∈ {0, . . . , N2 − 1}; finally, u(t) = x0 + ∫ t

0 v(s)ds.
By construction, each u is continuously differentiable and piecewise quadratic (Fig 4). Now let

Zc ⊆ Z be the space of functions u considered above. Using the bijections of type N2 → N and
NN2+2 → N, and the enumeration αX , we can define an enumeration αZ : N → Zc. Specifically:
for e = 〈N , 〈m0, m′

0, . . . , m′
N2〉〉, we define αZ (e) to be the stream u built from N and the tuple

(x0, y0, . . . , yN2) where x0 = αX (m0) and yj = αX (m′
j) for each j = 0, . . . N2.

Zc is easily seen to be countable and dense in Z . Thus, we can apply the construction of
Definition 4.1 and obtain the computability structure (ΩᾱZ , CᾱZ , ᾱZ).

EXAMPLE 4.5
(Computability on X × Y).
Given computability structures on spaces X ,Y , one can define a computability structure on the
product X × Y using the enumeration αX×Y (〈�, r〉) = (αX (�), αY (r)). Note that pseudonorms
(and a metric) on X × Y can be easily induced from X and Y as, e.g. ‖(x1, y1) − (x2, y2)‖n =
‖x1−x2‖n+‖y1−y2‖n. It is also not hard to see that CᾱX×Y = CᾱX ×CᾱY , and that this construction
can be generalized to finite products of the form X1 × . . . × XN and (hence) to XN .

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

Tracking computability of GPAC-generable functions 9

Figure 4. A continuous piecewise linear function v (left) and its integral, a C1 piecewise quadratic
function u (right). The data consist of an initial value x0 and derivative values y0, . . . , yN2 at
equispaced points.

FIGURE 5. Tracking function.

DEFINITION 4.6
(Tracking computability).
Let X and Y be complete metric spaces with enumerated countable dense subsets (Xc, αX), (Yc, αY)

and computability structures (ΩᾱX , CᾱX , ᾱX), (ΩᾱY , CᾱY , ᾱY). Let f : X ⇀ Y , and consider a
function ϕ : N ⇀ N.

We say that ϕ is a tracking function with respect to (αX , αY), or an (αX , αY)-tracking function,
for f , if

for all c ∈ ΩᾱX with ᾱX (c) ∈ dom f , we have that

c ∈ dom ϕ and ϕ(c) ∈ ΩᾱY and ᾱY (ϕ(c)) = f (ᾱX (c)).
(5)

When a function f has a recursive tracking function ϕ, we say that f is tracking computable with
respect to (αX , αY), or (αX , αY)-computable.

REMARK 4.7
(Strict tracking computability).
In the theory of tracking computability, stronger notions of strict tracking function and strict tracking
computability are often also considered (see, e.g. [22, Definition 7.1.2]). A strict tracking function

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

10 Tracking computability of GPAC-generable functions

is a tracking function φ such that, in addition to (5),

for all c ∈ ΩᾱX with ᾱX (c) �∈ dom f , we have that

c �∈ dom ϕ or ϕ(c) �∈ ΩᾱY .
(6)

For total functions f , the concepts of tracking function and strict tracking function coincide, and
hence, in particular, our proof that adders, multipliers, and integrators define tracking computable
functions (Lemma 5.2) holds for strict tracking computability as well. However, for the case of
continuous limits we only prove that it defines a tracking computable function. It would be interested
to investigate whether we can define a strict tracking function for continuous limits, and more
generally, whether, or under what conditions, the results in this paper extend to the stronger notion
of strict tracking computability.

5 Computability of the input–output operator

The goal of this section is to demonstrate that the input-output operator of an LGPAC is tracking
computable. We first show that this follows directly from the tracking computability of the basic
modules.

LEMMA 5.1
(Tracking computability of the input–output operator).
Let G be a multityped GPAC with input–output operator Φ : I×M ⇀ M×O. Suppose that each of
the modules occurring in G defines a tracking computable function. Then Φ is tracking computable.

PROOF. Let M1, . . . , M� be the modules appearing in G, each defining a corresponding func-
tion F1, . . . , F�, and having a corresponding tracking function ϕ1, . . . , ϕ�. Note that Φ can be
obtained from F1, . . . , F� via composition, projection and pairing. More formally, we can write
Φ(x1, . . . , xk) = (y1, . . . , y�) where each yj = Fj(xj), and xj is a subsequence of the inputs x1, . . . , xk .
Since composition, projection and pairing preserve tracking computability,7 we obtain a recursive
tracking function ϕ for Φ from ϕ1, . . . , ϕ�. Thus, Φ is tracking computable. �

Hence, we only need to prove that each of the basic modules considered in Section 3 is tracking
computable, which can be done under suitable assumptions.

LEMMA 5.2
(Tracking computability of the LGPAC modules).
Let X be a separable Fréchet space. Suppose that addition, scalar multiplication and pseudonorm
evaluation are all tracking computable on X . Let Z = C1(T,X) be the space of X -streams with the
computable structure induced by αX , as in Example 4.4. Then

1. for each computable element x ∈ X , the constant stream u(t) = x is a computable element in
C1(T,X);

2. each of the nonconstant modules from Section 3 (adder, multiplier, integrator and continuous
limit) defines a tracking computable function.

7The computability of basic algebraic operations is usually one of the first results to be proved for a model of computation.
For example, in the framework of computable analysis, this is proved in [14, Section 0.4]; and in the framework of type-2
theory of effectivity, this is proved in [25, Section 2.1]. The techniques carry over to the tracking computability framework in
this paper.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

Tracking computability of GPAC-generable functions 11

PROOF. We sketch the proof outline; additional technical details are given in the Appendix. Recall
that an element u ∈ Zc is described by a data tuple (x0, y0, . . . , yN2) and can be encoded by
e = 〈N , 〈m0, m′

0, . . . , m′
N2〉〉, where m0, m′

0, . . ., m′
N2 encode elements in Xc.

Constants: Given an element x ∈ Xc, the constant stream u(t) = x is in Zc; in particular, it
is encoded by N = 1 and the tuple (x, 0, 0). Recall that, by assumption, we have αX (0) = 0.
Thus, given a code c = 〈T , M〉 for a computable x ∈ X , we can consider the code c′ = 〈T ′, M〉
in which {T ′}(j) = 〈1, 〈{T}(j), 0, 0〉〉. To verify that the same modulus of convergence works, let
xj = αX {T}(j) and uj = αZ {T ′}(j). Then, uj(t) ≡ xj, so that u′

j(t) ≡ 0 and

‖ui − uj‖n = ‖ui(0) − uj(0)‖n + sup
0≤t≤n

‖u′
i(t) − u′

j(t)‖n = ‖xi − xj‖n.

Hence, c′ is a code for the desired constant stream, so that u is a computable element in Z .
Addition: Essentially, we need to approximately compute addition at ‘two levels’. At the ‘first

level’, we create a procedure that receives codes e1 and e2 for computable X -streams u1 = α(e1) and
u2 = α(e2), as well as a natural number �; it produces a code e+ of some element u+ = α(e+) that
approximates u1+u2 to precision 2−�. This is done by building a large common refinement, i.e. codes
for approximations ũ1, ũ2 of u1, u2 on a finer common grid. Each value in the new discretization
can be seen as a convex combination of two consecutive values in the old discretization. Since
addition and scalar multiplication are tracking computable in X , these convex combinations can be
approximated to arbitrarily high precision. Then, in order to compute the addition on the common
refinement, we can simply compute the pointwise addition with sufficiently high precision.

At the ‘second level’, assume we have codes c1 = 〈T1, M1〉, c2 = 〈T2, M2〉 for computable
elements u and v, respectively; we wish to find a code c+ = 〈T+, M+〉 for their sum w = u + v.
If we write ui = α{T1}(i), vi = α{T2}(i), wi = α{T+}(i), then the main idea is to define wj as a
(sufficiently good) approximation of uk1(j) + vk2(j), for some choice of k1 and k2 (depending on the
moduli of convergence {M1} and {M2}) that ensures wj is id-convergent to u + v.

Scalar multiplication: Compared to addition, there are two additional sources of error that we
have to control. At the ‘first level’, we recall the product rule for derivatives, (ru)′(t) = r(t)u′(t) +
r′(t)u(t). After finding approximate r̃, ũ on a large common refinement, we can approximately
evaluate the above expression at equispaced points, as long as we are able to compute r̃(j/N)

and ũ(j/N). Since r̃ and ũ are piecewise quadratic, these can be retrieved by integration using the
trapezoid rule x̃j+1 ≈ x̃j + 1

2N (ỹj + ỹj+1), and hence computed to arbitrary precision. Yet another
source of error appears in the analysis, since any approximation of ru is piecewise quadratic whereas
ru itself is piecewise quartic (as functions of t). This additional error can be controlled by first
finding an upper bound K� on ‖r‖� and ‖u‖� and then choosing a suitable large discretization N̄ .

At the ‘second level’, assume we have codes c1 = 〈T1, M1〉, c2 = 〈T2, M2〉 for sequences
ri = α{T1}(i), ui = α{T2}(i) converging to computable elements r and u, respectively; we wish to
find a code c× = 〈T×, M×〉 for a sequence vi = α{T×}(i) converging to their product v = ru. Again,
we define vj to be an approximation of the product rk1(j)uk2(j) to sufficiently high precision, computed
at the ‘first level’. By choosing a suitable k1(j), k2(j) we can ensure (vj) is id-convergent to ru.

Integration: The case of integration is quite similar to multiplication: if x ∈ X and
r ∈ C1(T,R), u ∈ C1(T,X) are represented by the tuples of data (p1

0, q1
0, . . . , q1

N2) and

(x2
0, y2

0, . . . , y2
N2), respectively, then the integral w(t) = x + ∫ t

0 u(s)dr(s) is a function with w(0) = x
and w′(t) = u(t)r′(t). Since the values of u(t) at equispaced points can be approximated by the trape-
zoid rule, this again yields a natural way to approximately compute a data tuple representation for w.

Continuous limit: If un ∈ C1(T,X) is an effective Cauchy sequence converging to a stream
u ∈ C1(T,X) which in turn has an id-convergent limit x ∈ X , then x equals limt→∞ limn→∞ un(t).

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

12 Tracking computability of GPAC-generable functions

Thus, a candidate for an approximation of x is ukn(tn), where tn and kn are large enough integers. By
effectivizing this line of thought, we produce a tracking function for the continuous limit module as
well. �

6 Computability of LGPAC-generable functions

In this section we prove the main result of this paper. The goal is to find out under which conditions
the function generated by an LGPAC is tracking computable. We recall that, in our terminology, an
LGPAC induces an operator and fixed point problem

Φ : I × M ⇀ M × O, Φ(uI , uM) = (uM , uO); (7)

for the LGPAC to generate a valid function, we require the fixed point problem to be well-posed on
I, that is, (7) has a unique, continuous, solution map F : uI �→ (uM , uO).

Our goal is to find conditions on Φ that imply that F is tracking computable. The idea is to find
F by solving an approximate fixed point problem

Given uI and ε > 0, find (uM , uO) such that d(Φ(uI , uM), (uM , uO)) < ε.
Moreover, from the point of view of tracking computability, we look for the desired uM , uO in

the enumerated, countable dense subset. Then, by using a sequence of ε converging to 0, and under
an additional assumption on F (namely, we will require a notion of effective well-posedness; see
Definition 6.2 below), this yields a sequence of uM , uO converging to the desired F(uI).

Let us now focus on the first step of this construction. Namely, we prove that it is possible to
construct approximate fixed points.

LEMMA 6.1
Let G be an LGPAC with input-output operator Φ : I × M ⇀ M × O. Assume that Φ is tracking
computable, and that G is well-posed on an open subset U ⊆ I. Then there exists a computable
procedure FixPt : (n, �) �→ m such that, if n is the code for an element uI = ᾱI(n) ∈ U and
� ∈ N, then m is the code for an enumerated element (uM , uO) = αM×O(m) ∈ M × O; and also
d(Φ(uI , uM), (uM , uO)) < 2−�.

PROOF. The procedure works as follows. For a given input n, �, let us write uI = ᾱI(n). We perform
the following dovetailing loop. First, guess an index m ∈ N for an element in (M × O)c. Second,
find m1, m2 such that αM×O(m) = (αM(m1), αO(m2)), via the pairing bijections. For clarity, let us
write uM = αM(m1), uO = αO(m2). Third, find n′ such that ᾱI×M(n′) = (uI , uM), using the code
n for uI and a code for the constant function {T1}(n) = m1. Fourth, find m′ = ϕ(n′) = 〈T ′, M ′〉,
where ϕ is a tracking function for Φ. Notice that

ᾱM×O(m′) = ᾱM×O(ϕ(n′)) = Φ(ᾱI×M(n′)) = Φ(uI , uM).

Fifth, find m′′ = {T ′}({M ′}(� + 2)). Since {M ′} is a module of convergence, it follows that for
k ≥ {M ′}(� + 2), one has

d(αM×O(m′′), αM×O({T ′}(k))) < 2−�−2.

In particular, since ᾱM×O(m′) is the limit of αM×O({T ′}(n)), then

d(ᾱM×O(m′), αM×O(m′′)) ≤ 2−�−2.

For clarity, let us write (ũM , ũO) = αM×O(m′′).

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

Tracking computability of GPAC-generable functions 13

Finally, check if d(αM×O(m′′), αM×O(m)) < 2−�−1; if yes, then break the loop and return m.
Observe that the distance function is tracking computable (to get a close enough approximation, it is
enough to evaluate sufficiently but finitely many pseudonorms).

Observe that, for some values of m, the corresponding execution of the loop may not terminate.
This may happen if ᾱI×M(n′) is not an element in the domain of Φ, so that ϕ(n′) may be a divergent
computation, or if the value of d(αM×O(m′′), αM×O(m)) is exactly 2−�−1 (equality may not be a
computable predicate). However, if a certain value of m happens to pass our test, then that value
satisfies the desired property: indeed,

d(Φ(uI , uM), (uM ,uO)) ≤ d(Φ(uI , uM), (ũM , ũO)) + d((ũM , ũO), (uM , uO))

= d(ᾱM×O(m′), αM×O(m′′)) + d(αM×O(m′′), αM×O(m))

< 2−�−2 + 2−�−1 = 2−�.

Moreover, such a value of m can always be found by our algorithm, due to our assumption that
G is well-posed on U . To see this, let uI = ᾱI(n) ∈ U . By well-posedness, there exists (a unique)
(uM∗ , uO∗) ∈ M × O with Φ(uI , uM∗) = (uM∗ , uO∗), and thus d(Φ(uI , uM∗), (uM∗ , uO∗)) = 0. Now the
left hand side of this equality is a continuous expression in uM∗ , uO∗ (the continuity of Φ follows from
the continuity of the module functions, and every metric d is continuous over its topology); thus
there exists δ > 0 such that for any uM , uO ∈ M × O one has

if d((uM∗ , uO∗), (uM , uO)) < δ then d(Φ(uI , uM), (uM , uO)) < 2−�−2.

By density of the enumerated subset, there exists m ∈ N such that αM×O(m) = (uM , uO) with
d((uM∗ , uO∗), (uM , uO)) < δ, and thus d(Φ(uI , uM), (uM , uO)) < 2−�−2, or in other words,

d(ᾱM×O(m′), αM×O(m)) < 2−�−2.

Moreover, the value of m′′, computed on step 4, will be such that

d(ᾱM×O(m′), αM×O(m′′)) ≤ 2−�−2,

and a simple application of the triangle inequality yields that

d(αM×O(m′′), αM×O(m)) < 2−�−1,

so the condition on step 5 is met. Thus, the dovetailing loop will effectively succeed in finding a
valid m. �

We have shown that it is possible to find approximate fixed points of the input-output operator.
In the next step, we would like to argue that approximate fixed points are in fact ‘near’ exact fixed
points, which is by no means a trivial statement (rather, there is extensive research on this problem;
see, e.g. [8, 9]). Intuitively, we want to establish conditions on the input-output operator Φ (and the
corresponding solution functional F) that effectively ensure the following: for each ε there is δ such
that if d(Φ(uI , uM), (uM , uO)) < δ, then d(F(uI), (uM , uO)) < ε (see Fig 6 for an intuition). This is
captured in the following notion, that we use as an assumption towards proving our main theorem.

DEFINITION 6.2
(Effective well-posedness).
Let G, Φ, U be as in Definition 3.5, with G well-posed on U and generating some function F. We say
that G is effectively well-posed on U if there is a computable modulus of convergence M : N → N

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

14 Tracking computability of GPAC-generable functions

FIGURE 6. Approximate fixed points vs approximations of the fixed point. Intuitively, assume that
the fixed point equation Φ(x, y) = y has a continuous solution operator y = F(x). Then, in a
neighborhood of x, approximate fixed points are ‘near’ the exact fixed point.

such that for all ν ∈ N and all uI ∈ U , uM ∈ M, uO ∈ O,

d(Φ(uI , uM), (uM , uO)) < 2−M(ν) ⇒ d(F(uI), (uM , uO)) < 2−ν . (8)

REMARK 6.3
(Well-posedness and effective well-posedness).
The well-posedness of G implies that, for any uI ∈ U , uM ∈ M, uO ∈ O,

d(Φ(uI , uM), (uM , uO)) = 0 iff d(F(uI), (uM , uO)) = 0.

Thus, effective well-posedness can be understood as an effective strengthening of this equivalence.

THEOREM 6.4
(Tracking computability of LGPAC generable functions).
Let G be an effectively well-posed LGPAC generating some function F on domain U . Suppose also
that each of the modules in G are tracking computable. Then F is tracking computable.

PROOF. By Lemma 5.1, the input–output operator Φ : I×M ⇀ M×O of G is tracking computable.
By Lemma 6.1, there exists a procedure FixPt : (eI , �) �→ eM×O that maps codes of computable
elements uI ∈ U to 2−�-approximate fixed points. Let MW be a computable modulus of convergence
witnessing the effective well-posedness of G. Then, given a code c = 〈T , M〉 of an element uI ∈ U ,
we can construct a code ϕ(c) = 〈T ′, M ′〉 for F(uI) by letting T ′ be a code for the function {T ′}(j) =
FixPt(c, MW (j + 1)) and M ′ be a code for the identity function. Indeed, the above procedure is
effective and, letting (uM

j , uO
j) = α{T ′}(j), we have by construction that d(Φ(uI , uM

j), (uM
j , uO

j)) <

2−MW (j+1), so that d(F(uI), (uM
j , uO

j)) < 2−j−1. In particular, (uM
j , uO

j) is an id-convergent Cauchy

sequence that converges to F(uI). �

7 Some applications of Theorem 6.4

We proceed to give two applications of our main result.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

Tracking computability of GPAC-generable functions 15

1. Computability over continuous real functions. Let us consider the data space X = C(R)

of continuous real functions. This can be considered a basic example of how the Shannon GPAC
can be generalized beyond real-valued computation. Moreover, C(R) is equipped with a multipli-
cation operation (fg)(x) = f (x)g(x), which naturally induces multiplication and integration over
C(R)-streams, ×(u, v)(t) = u(t)v(t) and (c, u, v) = c + ∫

udv. As one would expect, all these
operations are tracking computable.

LEMMA 7.1
Let X = C(R) be the class of continuous real functions with the computability structure defined
in Example 4.3. Then addition, scalar multiplication, multiplication, and pseudonorm evaluation
are tracking computable operations on X . Moreover, multiplication and integration over C1(T,X),
defined as ×(u, v)(t) = u(t)v(t) and (c, u, v) = c + ∫

udv are also tracking computable operations.

PROOF. For addition, multiplication and integration, we can adapt the proof from Lemma 5.2. Note
that, due to our choice of computability structure on R (Example 4.2), addition and multiplications
by rationals can be performed exactly (on their codes), so a lot of the error analysis disappears.
Moreover, functions in C(R) are approximated by piecewise linear functions instead of the more
complicated piecewise quadratic functions that we used in C1(T,X). Thus, the proofs become much
simpler and we omit the details.

Now consider pseudonorm evaluation. Given a function f ∈ Xc via its code e1 =
〈N , 〈m−N2 , . . . , m0, . . . , mN2〉〉, and an integer n, note that ‖f ‖n can be computed exactly: it simply
corresponds to the maximum of the rational numbers αR(mj), where j ranges either: between −N2

and N2 (if N ≤ n); or between −Nn and Nn (if N ≥ n).
Next, let c = 〈T , M〉 be a code for a function in X and n be an integer. Let fj = αX {T}(j). Define

a code 〈Tn, Mn〉 where {Tn}(j) is a code for the value ‖fj‖n (which can be computed exactly) and
{Mn}(ν) = {M}(ν + n). Note that for i, j ≥ {Mn}(ν) we have that dX (fi, fj) < 2−(ν+n) and hence
‖fi − fj‖n < 2−ν (by Proposition 2.3). By the triangular inequality we conclude that |‖fi‖n −‖fj‖n| <

2−ν as desired. �
Combining Lemma 5.2 and 7.1, we conclude that each nonconstant module on a multityped GPAC

over C(R) is tracking computable. Together with theorem 6.4, we obtain:

COROLLARY 7.2
Let G be a multityped GPAC with channels over R and X = C(R), constructed with the
following types of modules: constants (over R and X), adders (over R-streams and X -streams),
multipliers ×(u, v) and integrators (c, u, v), (where each of u, v is either an R-stream or an
X -stream), and continuous limits (over R-streams and X -streams). Suppose that each of the constant
modules appearing in G is tracking computable, and that G is effectively well-posed on U , generating
a function F. Then F is tracking computable.

2. Contracting operators. We show that the condition of effective well-posedness (Definition 6.2)
is automatically achieved for contracting operators, which form an important class in fixed point
theory. Formally, an input-output operator Φ is contracting if there is a constant λ ∈ [0, 1) such that

d(Φ(uI , uM), Φ(uI , ũM)) ≤ λd(uM , ũM).

LEMMA 7.3
Let G be a multityped GPAC and assume that its input-output operator Φ is contracting. Then G is
well-posed iff it is effectively well-posed.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

16 Tracking computability of GPAC-generable functions

PROOF. Clearly, effective well-posedness implies well-posedness. For the converse direction, assume
G is well-posed and let F be the function generated by G. For each uI ∈ I define Φ̂ : M × O →
M × O as Φ̂(uM , uO) = Φ(uI , uM). In this way, Φ̂ is a contracting self-map on M × O with
the same constant λ. As a consequence of the Banach fixed point theorem [15,Th. V.18], for any
(uM , uO) ∈ M × O we have that d(F(uI), (uM , uO)) ≤ 1

1−λ
d(Φ̂(uM , uO), (uM , uO)). Let us take

M(ν) = ν + C as a modulus of convergence, where C is any natural such that 2−C ≤ 1 − λ. Then
for any uI ∈ I, uM ∈ M, uO ∈ O such that d(Φ(uI , uM), (uM , uO)) < 2−M(ν), we get

d(F(uI), (uM , uO)) ≤ 1

1 − λ
d(Φ̂(uM , uO), (uM , uO)) <

2−ν−C

1 − λ
< 2−ν .

�
The following corollary is immediate from Theorem 6.4 and Lemma 7.3.

COROLLARY 7.4
Let G be a well-posed LGPAC generating some function F on domain U . Suppose that each of the
modules in G are tracking computable, and that the input-output operator Φ is contracting. Then F
is tracking computable.

8 Discussion

In this paper we presented partial results towards a comparison between the GPAC model of
computation and tracking computability on separable Fréchet spaces X . Two important questions
are left for further research.

1. Effective well-posedness. Our main result hinges on this extra assumption, allowing us to use
approximate fixed points to obtain approximations of the exact fixed point. The question of whether
this condition can be relaxed remains an open problem. Our difficulty stems from the usage of
arbitrary data spaces X , which in particular can be infinite-dimensional. In the case of X = Rk , i.e.
finite-dimensional spaces, standard results in analysis (e.g. the Picard-Lindelöf Theorem, [4]) allow
us to consider iterative methods to obtain such fixed points. Related to this observation, we have
argued that effective well-posedness comes ‘for free’ when the input-output operator is contracting.
It would be interesting to extend this argument to a larger class of ‘typical’ operators appearing in
Analysis.

2. Converse of Theorem 6.4. Investigating under which conditions tracking computable functions
are LGPAC-generable remains a major open problem. The most likely approach to answer this
question may be to first simulate the behavior of a Turing machine (or any other discrete model
of computation) in an analog network. As relevant literature, papers [1, 3, 5] provide a way to embed
states, transitions, and the discrete evolution of a Turing machine into real numbers, continuous real
functions, and the continuous evolution of a dynamical system respectively. With some care, their
techniques may be adaptable to our framework.

We hope that in tackling these problems new insights can be acquired about the power of analog
networks, and in particular the GPAC, as a model for analog computation.

Acknowledgements

The research of Diogo Poças was supported by the Alexander von Humboldt Foundation with funds
from the German Federal Ministry of Education and Research (BMBF). The research of Jeffery
Zucker was supported by the Natural Sciences and Engineering Research Council of Canada.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

Tracking computability of GPAC-generable functions 17

References

[1] O. Bournez, M. L. Campagnolo, D. S. Graça and E. Hainry. Polynomial differential equations
compute all real computable functions on computable compact intervals. Journal of Complex-
ity, 23, 317–335, 2007.

[2] V. Bush. The differential analyzer. A new machine for solving differential equations. Journal
of the Franklin Institute, 212, 447–488, 1931.

[3] M. L. Campagnolo, C. Moore and J. F. Costa. Iteration, inequalities, and differentiability in
analog computers. Journal of Complexity, 16, 642–660, 2000.

[4] E. A. Coddington and N. Levinson. Theory of Ordinary Differential Equations. In McGraw-
Hill, 1955.

[5] D. Graça, M. Campagnolo and J. Buescu. Robust simulations of Turing machines with analytic
maps and flows. In New Computational Paradigms, CiE 2005, volume 3526 of Lecture Notes
in Computer Science, pp. 169–179. Springer, 2005.

[6] Douglas R. Hartree. Calculating Instruments and Machines. Cambridge University Press,
1950.

[7] N. D. James and J. I. Zucker. A class of contracting stream operators. The Computer Journal,
56, 15–33, 2013.

[8] U. Kohlenbach and B. Lambov. Bounds on iterations of asymptotically quasi-nonexpansive
mappings. BRICS Report Series, 10, 2003.

[9] U. Kohlenbach and L. Leuştean. Asymptotically nonexpansive mappings in uniformly convex
hyperbolic spaces. Journal of the European Mathematical Society, 12, 71–92, 2010.

[10] A. I. Mal’cev. Constructive algebras I. In The metamathematics of algebraic systems: collected
papers, 1936-1967, pp. 148–212, North-Holland, 1971.

[11] D. Poças and J. Zucker. Approximability in the GPAC. Logical Methods in Computer Science,
15, 2019.

[12] Diogo Poças. Analog Computability with Differential Equations. PhD Thesis, McMaster
University, 2017.

[13] D. Poças and J. Zucker. Analog networks on function data streams. Computability, 7, 301–322,
2018.

[14] M. Pour-El and I. Richards. Computability in Analysis and Physics. Springer, 1989.
[15] M. Reed and B. Simon. Methods of Modern Mathematical Physics: Functional Analysis.

Academic Press, Inc, 1980.
[16] W. Rudin. Principles of Mathematical Analysis. In International Series in Pure and Applied

Mathematics, 3rd edn. McGraw-Hill, 1976.
[17] C. Shannon. Mathematical theory of the differential analyser. Journal Mathematical Physics,

20, 337–354, 1941.
[18] V. Stoltenberg-Hansen and J. Tucker. Computable and continuous partial homomorphisms on

metric partial algebras. Bulletin for Symbolic Logic, 9, 299–334, 2003.
[19] V. Stoltenberg-Hansen and J. V. Tucker. Effective algebras. In Handbook of Logic in Computer

Science, vol. 4, pp. 357–526. Oxford University Press, Oxford, 1995.
[20] V. Stoltenberg-Hansen and J. V. Tucker. Concrete models of computation for topological

algebras. Theoretical Computer Science, 219, 347–378, 1999.
[21] William Thomson and Peter Tate. Treatise on Natural Philosophy, chapter Appendix B, pp.

479–508. Cambridge University Press, 2nd edn, 1880.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

18 Tracking computability of GPAC-generable functions

[22] J. V. Tucker and J. I. Zucker. Abstract versus concrete computation on metric partial algebras.
ACM Transactions on Computational Logic, 5, 611–668, 2004.

[23] J. V. Tucker and J. I. Zucker. Computable total functions, algebraic specifications and
dynamical systems. Journal of Algebraic and Logic Programming, 62, 71–108, 2005.

[24] J. V. Tucker and J. I. Zucker. Abstract versus concrete computability: The case of countable
algebras. In Logic Colloquium ’03, Proceedings of the Annual European Summer Meeting of
the Association for Symbolic Logic, Helsinki, August 2003, volume 24 of Lecture Notes in
Logic, pp. 377–408. Springer, 2006.

[25] K. Weihrauch. Computable Analysis: An Introduction. In Texts in Theoretical Computer
Science. Springer, Berlin Heidelberg, 2000.

Appendix: Technical details in the proof of Lemma 5.2

Addition: Let e1, e2, � be natural numbers, where e1 and e2 encode computable X -streams
u1 = α(e1) and u2 = α(e2). We need to show how to effectively compute a code e+ of some element
u+ = α(e+) that approximates u1+u2 to precision 2−�, that is, such that ‖u+−(u1+u2)‖� < 2−�−2.

We know that u1 and u2 are given by some data tuples (x1
0, y1

0, . . . , y1
N2

1
) and (x2

0, y2
0, . . . , y2

N2
2
)

respectively. First, we build a large common refinement, that is, a large discretization parameter
N̄ which is a multiple of both N1 and N2, and data tuples (x̃1

0, ỹ1
0, . . . , ỹ1

N̄2), (x̃2
0, ỹ2

0, . . . , ỹ2
N̄2) that

correspond to approximations ũ1, ũ2 of u1, u2 on a finer grid. For example, if N̄ = k × N1, ũ1
can be obtained by setting ỹ1

ki+� ≈ k−�
k y1

i + �
k y1

i+1; each value in the new discretization is a
convex combination of two consecutive values in the old discretization. Since addition and scalar
multiplication are tracking computable in X , these convex combinations can be approximated to
arbitrarily high precision.

To compute the addition on the common refinement, we can simply add the pointwise values, that
is, set x+

0 ≈ x̃1
0 + x̃2

0 and y+
j ≈ ỹ1

j + ỹ2
j . By computing these sums with sufficiently high precision,

we have indeed produced the desired code e+.
By the previous discussion, we have a procedure add : (e1, e2, �) �→ e+ such that, for

u1 = α(e1), u2 = α(e2), u+ = α(e+), we have ‖u+ − (u1 + u2)‖� < 2−�−2. Next, assume we
have codes c1 = 〈T1, M1〉, c2 = 〈T2, M2〉 for computable elements u and v respectively; we wish to
find a code c+ = 〈T+, M+〉 for their sum w = u + v. Let us introduce the notation ui = α{T1}(i),
vi = α{T2}(i), wi = α{T+}(i).

We shall set {T+}(j) = add({T1}(k1(j)), {T2}(k2(j)), j), where k1(j) = {M1}(2j + 2) and
k2(j) = {M2}(2j + 2). Intuitively, wj is a (sufficiently good) approximation of uk1(j) + vk2(j).
Furthermore, we set M+ as a code for the identity function. To show that (wj) is id-convergent,
fix ν and suppose that i, j ≥ ν. Observe that

‖wi − wj‖ν ≤‖wi − (uk1(i) + vk2(i))‖ν + ‖uk1(i) − uk1(j)‖ν

+ ‖vk2(i) − vk2(j)‖ν + ‖wj − (uk1(j) + vk2(j))‖ν .

To bound the first term above, we observe that ‖wi − (uk1(i) + vk2(i))‖ν ≤
‖wi − (uk1(i) + vk2(i))‖i < 2−i−2 ≤ 2−ν−2; a similar argument holds for the fourth term. For
the second term, note that by our choice of k1(ν) we have d(uk1(i), uk1(j)) < 2−2ν−2, and by
Proposition 2.3 this implies ‖uk1(i) − uk1(j)‖ν < 2−ν−2; similarly for the third term. Putting all this
together yields ‖wi − wj‖ν < 2−ν , which again by Proposition 2.3 implies d(wi, wj) < 2−ν , as

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

Tracking computability of GPAC-generable functions 19

desired. A similar reasoning also proves that wi converges to u + v. Hence, addition is tracking
computable.

Scalar multiplication: In the same way as for addition, we show how to approximately compute
the scalar multiplication at ‘two levels’. At the ‘first level’, let e1, e2 be natural numbers encoding
a computable R-stream r = α(e1) and X -stream u = α(e2), respectively. We need to show that we
can compute the scalar multiplication ru to an arbitrary precision. In particular, we will show how
to effectively compute, given a natural number �, a code e× of some element u× = α(e×) such that
‖u× − ru‖� < 2−�−2.

We know that r and u are given by some data tuples (p0, q0, . . . , qN2
1
) and (x0, y0, . . . , yN2

2
)

respectively. First, we effectively find an upper bound K� on the pseudonorms ‖r‖� and ‖u‖� by
(approximately) computing the maximum of |p0|, |qj|, ‖x0‖�, ‖y0‖� (by assumption, pseudonorm
evaluation is tracking computable on X).

Next, we construct a large common refinement, say (p̃0, q̃0, . . . , q̃N̄2) and (x̃0, ỹ0, . . . , ỹN̄2),
corresponding to approximations r̃, ũ of r, u on a finer grid, as we did for addition. To compute
the multiplication on the common refinement, we recall the product rule for derivatives, (ru)′(t) =
r(t)u′(t) + r′(t)u(t). To compute this expression at equispaced values of t, we must first find the
values of r̃(j/N), ũ(j/N). Since r̃, ũ are piecewise quadratic, these can be recursively obtained by
integration using the trapezoid rule,

p̃j+1 ≈ p̃j + 1

2N
(q̃j + q̃j+1), x̃j+1 ≈ x̃j + 1

2N
(ỹj + ỹj+1). (A.1)

Again, p̃j, x̃j can be approximated to arbitrarily high precision. Therefore, r̃ũ can be approximated
by the function u× given by (x×

0 , y×
0 , . . . , y×

N̄2), where x×
0 is (the approximating computation of) p̃0x̃0;

and each y×
j is (the approximating computation of) p̃jỹj + q̃jx̃j.

There is one more error term appearing in our analysis, since u× is piecewise quadratic whereas
ru is piecewise quartic (as functions of t). To describe an effective bound on the approximation
error ‖u× − ru‖�, we need to take into account: the approximation errors for the refinement and
the multiplications over Xc, the upper bound K� on ‖r‖� and ‖u‖�; the consecutive differences
max ‖q̃j+1 − q̃j‖n, max ‖ỹj+1 − ỹj‖n; and the discretization N̄ . Ultimately, we can bound this error in
an effective way by choosing N̄ large enough.

By the previous discussion, we have a procedure mult : (e1, e2, �) �→ e× such that, for
r = α(e1), u = α(e2), u× = α(e×), we have ‖u× − ru‖� < 2−�−2. At the ‘second level’, assume we
have codes c1 = 〈T1, M1〉, c2 = 〈T2, M2〉 for computable elements r and u respectively; we wish to
find a code c× = 〈T×, M×〉 for their product v = ru. Let us introduce the notation ri = α{T1}(i),
ui = α{T2}(i), vi = α{T×}(i).

First, for any ν ∈ N, we can effectively find a uniform bound K(ν) such that ‖ri‖ν , ‖ui‖ν < K(ν)

independently of i. This is because, letting μ = {M1}(ν), we know that for i > μ one has d(ri, rμ) <

2−ν and hence ‖ri − rμ‖ν < 1 by Proposition 2.3, so that ‖ri‖ν < ‖rμ‖ν + 1. On the other hand, we
can approximately compute ‖ri‖ν for each of the finitely many i ≤ μ. A similar analysis holds for
‖ui‖ν . Taking (a sufficiently close approximation of) the maximum of these values gives the desired
uniform bound.

Next, observe that for any r, r̃ ∈ R, x, x̃ ∈ X , ν ∈ N, we have ‖rx−r̃x̃‖ν ≤ |r|‖x−x̃‖ν+|r−r̃|‖x̃‖n;
together with (3), we can derive the useful bound

‖ri1 uj1 − ri2uj2‖ν ≤ (ν + 1)K(ν)
(‖ri1 − ri2‖ν + ‖uj1 − uj2‖ν

)
. (A.2)

We are now in condition to describe how to compute {T×}(ν) for a given ν. First, find a uniform
bound K(ν) as described above. Second, find an integer C such that 2C > K(ν)(ν + 1). Third,

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

20 Tracking computability of GPAC-generable functions

compute k1(ν) = {M1}(2ν + C + 2) and k2(ν) = {M2}(2ν + C + 2). Finally, return

{T×}(ν) = mult({T1}(k1(ν)), {T2}(k2(ν)), ν).

Intuitively, this means that vi is a (sufficiently good) approximation of rk1(i)uk2(i). We show that the
sequence vi constructed in this way is id-convergent. Fix ν and suppose that i, j ≥ ν. Observe that

‖vi − vj‖ν ≤ ‖vi − rk1(i)uk2(i)‖ν + ‖rk1(i)uk2(i) − rk1(j)uk2(j)‖ν + ‖rk1(j)uk2(j) − vj‖ν .

The first term above, by construction, can be bounded as ‖vi −rk1(i)uk2(i)‖ν ≤ ‖vi −rk1(i)uk2(i)‖i <

2−i−2 ≤ 2−ν−2, and similarly for the third term. In order to bound the second term, note that
by our choice of k1(ν) we have that d(rk1(i), rk1(j)) < 2−2ν−2−C . By Proposition 2.3, this implies

‖rk1(i) − rk1(j)‖ν < 2−ν−2−C < 2−ν−1

2K(ν)(ν+1)
. A similar bound holds for ‖uk2(i) −uk2(j)‖ν . Putting these

in (2) yields ‖rk1(i)uk2(i) − rk1(j)uk2(j)‖ν < 2−ν−1. Thus, we conclude that ‖vi − vj‖ν < 2−ν−2 +
2−ν−1 +2−ν−2 = 2−ν , and hence d(vi, vj) < 2−ν , i.e. vi is id-convergent. A similar reasoning proves
that vi converges to ru. Hence, the above describes a tracking function for scalar multiplication.

Continuous limit: Let u ∈ Zc be represented by the tuple (x0, y0, . . . yN2), where each x0, yj ∈ Xc.
We first observe that, for any natural number n ∈ N, the value of u(n) can be approximated as

u(n) ≈
{

xnN if n ≤ N ;
xN2 + (N − n)yN2 if n ≥ N ,

where the xj are again recursively obtained via the trapezoid rule. Consequently, one can devise a
computable procedure eval : (e, n, �) �→ eeval such that, given a code e of some element u = αZ (e)
and natural numbers n, �, it produces a code eeval of some element x = αX (eeval) with d(x, u(n)) <

2−�; i.e. x approximates u(n) within an error of 2−�.
Now let c = 〈T , M〉 be a code for an effective Cauchy sequence uj = αZ {T}(j) in Zc converging

to a computable element u ∈ C1(T,X). We want to compute a code c∞ = 〈T∞, M∞〉 for an effective
Cauchy sequence xj = αX {T∞}(j) in Xc converging to the limit x = Lu = limt→∞ u(t) ∈ X .

The idea is to define {T∞}(j) = eval({T}(kj), tj, �j), for a suitable choice of �j = j + 3, tj = j + 2
and kj = {M}(3j + 5). To prove that (xj) is an id-convergent Cauchy sequence, let ν ∈ N be given,
and suppose that i, j ≥ ν. By applying the triangular inequality, dX (xi, xj) is upper bounded as

dX (xi, xj) ≤dX (xi, uki(ti)) + dX (uki(ti), u(ti)) + dX (u(ti), u(tj))

+ dX (u(tj), ukj(tj)) + dX (ukj(tj), xj).

By our choice of �j = j + 3 we immediately get that dX (xi, uki(ti)) < 2−ν−3 and dX (ukj(tj), xj) <

2−ν−3. Since u is an id-convergent Cauchy stream, and by our choice of tj = j+2, we can also bound
dX (u(ti), u(tj)) < 2−ν−2. Next we need to handle the terms dX (uki(ti), u(ti)) and dX (ukj(tj), u(tj)),
which amounts to show that kj = {M}(3j + 5) is suitably large.

Indeed, observe that dZ (ukj , u) ≤ 2−3j−5 = 2−3tj+1. Using Proposition 2.3 then yields
‖ukj − u‖tj ≤ 2−2tj+1, and using (3) we have8

‖ukj(tj) − u(tj)‖tj ≤ tj
2tj−1 2−tj ≤ 2−tj .

Once more by Proposition 2.3 we get dX (ukj(tj), u(tj)) ≤ 2−tj ≤ 2−ν−2. The same reasoning also
gives the bound dX (uki(ti), u(ti)) ≤ 2−ν−2. Combining all these bounds yields dX (xi, xj) < 2−ν , so

8Observe that tj ≤ 2tj−1 for any tj = j + 2 ≥ 2.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

Tracking computability of GPAC-generable functions 21

that (xj) is an id-convergent Cauchy sequence. In particular, we can take M∞ to be a code for the
identity function.

This construction shows that c = 〈T , M〉 �→ c∞ = 〈T∞, M∞〉 is an effective procedure. We also
proved that, for all j ∈ N, dX (xj, u(tj)) < 2−j−3 + 2−j−2, implying that limj xj = limt u(t); hence c∞
encodes an effective Cauchy sequence converging to Lu as desired.

Received 30 May 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article/doi/10.1093/logcom
/exaa081/6038922 by guest on 17 D

ecem
ber 2020

	Tracking computability of GPAC-generable functions
	1 Introduction
	2 Preliminaries
	3 The LGPAC
	4 Tracking computability
	5 Computability of the input--output operator
	6 Computability of LGPAC-generable functions
	7 Some applications of Theorem 6.4
	8 Discussion

