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Abstract. We consider the measurement of physical quantities that are
thresholds. We use hybrid computing systems modelled by Turing ma-
chines having as an oracle physical equipment that measures thresholds.
The Turing machines compute with the help of qualitative information
provided by the oracle. The queries are governed by timing protocols and
provide the equipment with numerical data with (a) infinite precision,
(b) unbounded precision, or (c) finite precision. We classify the compu-
tational power in polynomial time of a canonical example of a threshold
oracle using non-uniform complexity classes.

1 Introduction

Computation andmeasurement are intimately connected in all sorts of ways.Mea-
surement is a scientific activity supported by a comprehensive axiomatic theory de-
veloped in the 20th Century using the methods of mathematical logic (see [9,11]).
We are developing a new theory ofmeasurementprocesses froman algorithmicper-
spective, in a series of papers (see [2,3,4,5,6,7,8]). At the heart of our theory is the
idea that an experimentermeasures a physical quantity by applying an algorithmic
procedure to equipment, and that we can model the experimenter as a Turing ma-
chine and the equipment as a device connected to the Turing machine as a physical
oracle. The Turing machine abstracts the experimental procedure, encoding the
experimental actions as a program. The physical oracle model is rather versatile:
for example, it accommodates using the measurements in subsequent computa-
tions and, indeed, arbitrary interactions with equipment. Some implications for
the axiomatic theory have been considered in [5].1 Case studies shape the develop-
ment of the theory. The standard oracle to a Turing machine is a set that contains
information to boost the power and efficiency of computation: a query is a setmem-
bership question that is answered in one time step. Experiments require queries
based upon rational numbers (dyadic rationals denoted by finite binary strings).

� Corresponding author.
1 Scientific activity seen as a Turing machine can be found in computational learning
theory (see [10]).
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The measurement of distance taught us that oracles involve information with pos-
sible error (see [2,4,8]). The measurement of a mass taught us that oracles may
take considerable time to consult (such an experiment is fully analysed in [6,8]).
An important difference is the need of a cost function T of the size of the query
(e.g., a timer) as part of the Turing machine. To measure the value of a physical
quantity, i.e., a real number μ, the experimenter (= the Turing machine) proceeds
to construct approximations (which are generated by oracle consultations).When-
ever possible, a measurement procedure should approximate the unknown quan-
tity from above and from below, in a series of experimental values that converges.
We call such experiments two-sided. Two-sided measurement is the focus of our
previous work (see [8]), and that of axiomatic measurement theory (see [9]). How-
ever, not all measurements can be made this way: some quantities by their nature,
or by the nature of the equipment, are thresholds that can only be approximated
either just from below or just from above. Examples are experiments on activation
thresholds for the neurone and Rutherford scattering. We study threshold experi-
ments in this paper, which are complex and are not yet addressed in the literature.
We prove the following new theorems that indicate the computational power of
threshold oracles and reveal differences with the less complex two-sided case:

Theorem 1.1. (1) If a set A is decided in polynomial time by an oracle Turing
machine coupled with a threshold oracle of infinite precision, then A ∈ P/ log2�.
If a set A is in P/ log�, then A is decided by a oracle Turing machine coupled
with a threshold oracle of infinite precision.2 (2) If a set A is decided by an
oracle Turing machine coupled with a threshold oracle of unbounded or fixed
precision, then A ∈ BPP// log2�. If a set A is in BPP// log�, then A is decided
in polynomial time by a oracle Turing machine coupled with a threshold oracle.3 ,4

Threshold oracles have not yet been considered in the literature (e.g., in [4]) and
the results about two-sided oracles do not apply to these systems. Moreover, the
upper bound known so far for the two-sided oracles with non-infinite precision
is P/poly (except for particular types of two-sided oracles considered in [4] and
[7] for which the upper bounds are P/poly and BPP// log�, respectively).

2 Let B be a class of sets and F a class of functions. The advice class B/F is the class
of sets A for which there exists B ∈ B and some f ∈ F such that, for every word w,
w ∈ A if and only if 〈w, f(|w|)〉 ∈ B. For the prefix advice class B/F� some (prefix)
function f ∈ F must exist such that, for all words w of length less than or equal to
n, w ∈ A if and only if 〈w, f(n)〉 ∈ B. The role of advices in computation theory
is fully discussed e.g. in [1], Chapter 5. We use log2 to denote the class of advice
functions such that |f(n)| ∈ O((log(n))2).

3 BPP//F� is the class of sets A for which a probabilistic Turing machine M, a prefix
function f ∈ F�, and a constant γ < 1

2
exist such that, for every length n and input

w with |w| ≤ n, M rejects 〈w, f(n)〉 with probability at most γ if w ∈ A and accepts
〈w, f(n)〉 with probability at most γ if w /∈ A.

4 Note that in experiments where the lower/upper bounds are P/poly for the infinite
precision case, the unbounded comes together because BPP//poly = P/poly. In the
threshold experiments, however, the unbounded and finite precision cases display
identical power.
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2 Threshold Experiments

We will begin by listing some examples of threshold experiments and then we
will focus on one particular experiment, the broken balance experiment, which is
canonical.

2.1 The Squid Giant Motor Neurone

This first threshold experiment is inspired in the spiking neurone, such as the
squid giant motor neurone, and it is designed to measure the threshold of ac-
tivation: an electric current ι is injected into the cell and the action potential,
once generated, can be detected along the axon. Suppose that the rest (mem-
brane) potential is ν0 (ν0 ∼ −65mV ) and that the threshold electric current is
ι0 (ι0 ∼ 2nA). The goal is to measure the threshold ι0, for some concentration
of the ions: (a) if ι < ι0, then no signal is sent along the axon and (b) if ι ≥ ι0,
a series of action potentials is propagated along the axon. Once the current is
switched off, the rest potential is reset.

2.2 The Photoelectric Effect Experiment

The equipment consists of a metallic surface, a source of monochromatic light
and an electron detector. Each photon of the light beam has energy E = hf ,
where h is the Planck constant and f is the frequency of the light. On the other
hand, the metallic surface is characterised by a value φ = hf0 of energy, where f0
is the minimum (threshold) frequency required for photoelectric emission. The
goal is to measure f0, and to that end we can send a light beam with frequency
f : (a) if f ≤ f0, then no electron escapes the surface and (b) if f > f0, then
the electrons are ejected with kinetic energy E = h(f − f0). In this way, the
photoelectric experiment is a threshold experiment, since we only get a response
whenever the light beam frequency exceeds the threshold frequency.

z y

Rigid block

O

h

Fig. 1. Schematic representation of the broken balance experiment

2.3 The BBE: Broken Balance Experiment

The experiment consists of a balance scale with two pans (see Figure 1). In the
right pan we have some body with an unknown mass y. To measure y we place
test masses z on the left pan of the balance: (a) if z < y, then the scale will not
move since the rigid block prevents the right pan from moving down, (b) if z > y,
then the left pan of the scale will move down, which will be detected in some
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way and (c) if z = y, then we assume that the scale will not move since it is in
equilibrium. We assume the following characteristics of the apparatus inter alia:
(a) y is a real number in [0, 1], (b) the mass z can be set to any dyadic rational in
the interval [0, 1], and (c) a pressure-sensitive stick is placed below the left side of
the balance, such that, when the left pan touches the pressure-sensitive stick, it
reacts producing a signal. In the context of classical, pure Newtonian mechanics
of the rigid body, in the perfect Platonic world, once we assume that the test
mass weighs z and the unknown mass weighs y, the cost of the experiment,
Texp(z, y), which is the time taken for the left pan of the balance to touch the
pressure stick, is given by:

[Texp(z, y) = τ ×
√

z + y

max(0, z − y)
for all y, z ∈ R.5] (1)

3 The BBE Machine as a Means to Measure Real
Numbers

In what follows the suffix operation �n on a word w, w�n, denotes the prefix
sized n of the ω-word w0ω, no matter the size of w. Letters such as a, b, c, ...,
denote constants. To the oracle Turing machine modelM we associate a schedule
T : N → N, a time constructible function such that T (�) steps of busy waiting of
M are needed for the oracle to provide an answer ‘yes’ or ‘timeout’, resulting
in a transition of M to the state qyes or qtimeout, respectively. Everything about
setting an oracle Turing machine coupled with a physical experiment as oracle
can be found in [2,6].

A larger variety of experiments could have been mentioned (such as Ruther-
ford’s scattering experiment). However, since the BBE is fairly simple to analyse
and understand, and as it displays the properties of threshold experiments, we
will focus on it. Just as in previous investigations (see, e.g., [2,6,7]), we will con-
sider different types of precision, i.e., different communication protocols between
the experimenter/Turing machine and the oracle/analogue device: (a) infinite
precision: when the dyadic z is read in the query tape, a test mass z is simul-
taneously placed in the left pan, (b) unbounded precision: when the dyadic z is
read in the query tape, a test mass z′ is simultaneously placed in the left pan
such that z−2−|z| ≤ z′ ≤ z+2−|z| and (c) fixed precision ε > 0: when the dyadic
z is read in the query tape, a test mass z′ is simultaneously placed in the left
pan such that z − ε ≤ z′ ≤ z + ε. In the last two cases, z′ is assumed to be an
independent random variable, with a uniform distribution on the error interval.
In what follows, Mass(m��) denotes the action that triggers the BBE experiment
with mass m��. Depending on the context, the experiment is performed either
with infinite, unbounded or finite precision, as explained above.

5 This expression for the time, specifically exhibiting an exponential growth on the
precision of z with respect to the unknown y, is typical in physical experiments,
regardless of the concept being measured. The constant τ depends on the geometry
of the lever, the value of h and the acceleration of gravity g.
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Definition 3.1. We say that a set A is decidable by an infinite precision BBE
machine in polynomial time if there is an oracle Turing machine M, an unknown
mass y and a time schedule T such that M decides A and runs in polynomial
time. We say that a set A is decidable by an unbounded (or fixed) precision BBE
machine in polynomial time if there is an oracle Turing machine M running in
polynomial time, an unknown mass y, a time schedule T , and some 0 < γ < 1/2
such that, for any input word w, (a) if w ∈ A, then M accepts w with probability
at least 1− γ and (b) if w �∈ A, then M rejects w with probability at least 1− γ.

Algorithm “Binary Search” :

Input number � ∈ N; % number of places to the right of the left leading 0
x0 := 0; m := 0, x1 := 1;
While x1 − x0 > 2−� Do Begin

m := (x0 + x1)/2;
s := Mass(m��); % Proc. Mass is either deter. or stoch. and takes time T (�)
If s = ‘yes’ Then x1 := m Else x0 := m;

End While;
Output x0.

Fig. 2. The experimental procedure Mass takes the scheduled time T (�), where � is the
size of the query and T an arbitrary time constructible function

Algorithm “Search(ε, h)” :

Input number � ∈ N; % number of places to the right of the left leading 0

c := 0; ζ := 22�+h; % h is used to bound the probability of error

Repeat ζ times
s := Mass(1��); % Recall that this step takes T(�) units of time

If s = ‘yes’ Then c := c+ 1;
End Repeat;

Output c/ζ.

Fig. 3. The experimental procedure Mass is stochastic for the fixed precision case

Proposition 3.1. (1) Let s be the result of Mass(m) in Figures 2 and 3, for an
unknown mass y and time schedule T . In the infinite precision scenario, (a) if
s =‘yes’, then y < m and (b) if s =‘timeout’, then y > m − (τ/T (|m|))2.
In the unbounded precision scenario, (a) if the oracle Mass(m) answers ‘yes’,
then y < m + 2−|m| and (b) if the oracle Mass(m) answers ‘timeout’, then
y > m − 2−|m| − (τ/T (|m|))2. (2) For any unknown mass y and any time
schedule T , (a) the time complexity of algorithm of Figure 2, both in the infinite
and unbounded precision scenarios, for input �, is O(�T (�)), (b1) in the infinite
precision case, for all k ∈ N, there exists � ∈ N such that T (�) ≥ τ2k/2 and the
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output is a dyadic rational m such that |y − m| < 2−k, (b2) in the unbounded
precision case, for all k ∈ N, there exists � ∈ N such that � ≥ k + 1 and T (�) ≥
τ2(k+1)/2 and the output is a dyadic rational m such that |y − m| < 2−k, and
(c) moreover, both in the infinite and unbounded precision scenarios, � is at most
exponential in k and, if T (k) is exponential in k, then the value of � witnessing
(b) can be taken to be linear in k. (3) For all s ∈ (0, 1), ε ∈ (0, 1/2), h ∈ N, and
time schedule T , (a) the time complexity of algorithm of Figure 3 for input � is
O(22�T (�)), (b) for all k ∈ N there exists � ∈ N such that T (�) > τ2(k+1)/2/

√
2ε

and thus, with probability of error 2−h, the output of the algorithm is a dyadic
rational m such that |s−m| < 2−�, and (c) if T (k) is exponential in k, then the
value of � witnessing the above proposition is linear in k.

In both cases of unbounded and finite precision, the experiment becomes prob-
abilistic and we can use it to simulate independent coin tosses and to produce
random strings. We can state (see [13,2]):

Proposition 3.2. (1) For all unknown mass y and all time schedule T there is
a dyadic rational z and a real number δ ∈ (0, 1) such that the result of Mass(z)
is a random variable that produces ‘yes’ with probability δ and ‘timeout’ with
probability 1− δ. (2) Take a biased coin with probability of heads δ ∈ (0, 1) and
let γ ∈ (0, 1/2). Then there is an integer N such that, with probability of failure
at most γ, we can use a sequence of independent biased coin tosses of length Nn
to produce a sequence of length n of independent fair coin tosses.

4 Lower Bounds on the BBE Machine

We encode an advice function (f : N → {0, 1}�) ∈ log� into a real number
μ(f) ∈ (0, 1) by replacing every 0 by 100, every 1 by 010 and adding 001 at the
end of the codes for f(2k), with k ∈ N (see Section 6(c) of [2]). These numbers
belong to the Cantor set C3.
Theorem 4.1. If A ∈ P/ log�, then A is decidable by a BBE machine with
infinite precision in polynomial time.

Proof: Let f be a prefix function in log� and M′ be a Turing machine running on
polynomial time such that, for any natural number n and any word w such that
|w| ≤ n, w ∈ A iff M′ accepts 〈w, f(n)〉. Let y = μ(f) and T any exponential
time schedule. Since f ∈ log, there are constants a, b ∈ N such that, for all n,
|f(n)| ≤ a�log(n)� + b. For each n ∈ N, let kn = 3(a + 1)�log(n)� + 3b + 8.
Resorting to Proposition 3.1 (2) (b1) and (c), there is a value of �, linear in
kn (and thus linear in �log(n)�), such that T (�) > τ2kn/2 and so the result of
running the algorithm of Figure 2 for input � is a dyadic rational m such that
|y −m| < 2−kn . Then, by Cantor C3 properties,6 m and y coincide in the first

6 For every x ∈ C3 and for every dyadic rational z ∈ (0, 1) with size |z| = m, (a) if
|x − z| ≤ 1/2i+5, then the binary expansions of x and z coincide in the first i bits
and (b) |x− z| > 1/2m+10.
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kn − 5 = 3(a + 1)�log(n)� + 3(b + 1) bits, which means that m can be used to
decode f(2�log(n)�). The oracle machine M that reads the dyadic m and then
simulates M′ for the input word 〈w, f(2�log(n)�)〉 decides A. Furthermore, from
Proposition 3.1 (2) (a) and the fact that A ∈ P/ log�, the time complexity of
these activities is polynomial in n. �

Theorem 4.2. If A ∈ BPP// log�, then (a) A is decidable by a BBE machine
with unbounded precision in polynomial time and (b) A is decidable by a BBE
machine with fixed precision ε ∈ (0, 1/2) in polynomial time.

Proof: Herein we prove (a) and leave (b) to the full paper. Let M′ be the advice
Turing machine working in polynomial time p3, f ∈ log� the prefix function and
γ3 ∈ (0, 1/2) the constant witnessing that A ∈ BPP// log�. Let a, b ∈ N be
such that, for all n, |f(n)| ≤ a�log(n)� + b. Let γ2 be such that γ3 + γ2 < 1/2.
Let y = μ(f) and consider any exponential time schedule T . By Proposition
3.2 (1), there is a dyadic rational z that can be used to produce independent
coin tosses with probability of heads δ ∈ (0, 1). This rational depends only on
y and T and can be hard-wired into the machine. By Proposition 3.2 (2), we
can take an integer N (depending on δ and γ2) such that we can use Nn biased
coin tosses to simulate n fair coin tosses, with probability of failure at most γ2.
For each n ∈ N, let kn = 3(a+ 1)�log(n)�+ 3b+ 8. By Proposition 3.1 (2) (b2)
and (c), there is �, linear in kn, such that the result of the algorithm of Figure
2 in the case of unbounded precision, for input �, is a dyadic rational m such
that |y − m| < 2−kn , so that, by the Cantor set properties, m can be used to
decode f(2�log(n)�). We design a oracle machine M that, on input w of size n,
starts by running Binary Search for input � and then uses the result to decode
the advice μ(f). In the next step, the machine uses the dyadic rational z to
produce a sequence of Np3(n) independent biased coin tosses and extract from
it a new sequence of p3(n) independent fair coin tosses. If it fails (which may
happen with probability at most γ2), then the machine rejects w. Otherwise
the machine simulates M′ on input 〈w, f(2�log(n)�)〉 using the sequence of p3(n)
fair coin tosses to decide the path of the computation of M′. The machine M
decides A in polynomial time. If w ∈ A, then M rejects w if it failed to produce
the sequence of fair coin tosses or if M′ rejected w. The probability of rejecting
w is bounded by γ2 + γ3. On the other hand, if w �∈ A, then M accepts w if it
produced a sequence of fair coin tosses and if M′ accepted w, and this happens
with probability at most γ3. This means that the error probability of M is
bounded by constant γ2 + γ3 which is less than 1/2. By Proposition 3.1 (2) (a),
the time complexity of the first step is O(�T (�)). Since � is logarithmic in n and
T is exponential in �, the result is bounded by some polynomial in n, p1(n). The
time complexity of the second step is also bounded by some polynomial p2 in n,
since we require only a polynomial amount of Np3(n) biased coin tosses. Finally,
since M′ runs in polynomial time p3, we conclude that M runs in polynomial
time O(p1 + p2 + p3). �
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5 Upper Bounds on the BBE Machine

5.1 P/ log� is an Upper Bound for the Infinite Precision Case

We introduce a sequence of real numbers called boundary numbers. These are
defined in terms of the time Texp(z, y) taken by the experiment for test value
z and unknown value y (see the timing Equation (1) in 2.3 for an example of
this), and the time schedule T : N → N which used to determine the output
‘timeout’.

Definition 5.1. Let y ∈ (0, 1) be the unknown mass and T a time schedule.
Then, for all k ∈ N, we define wk ∈ (0, 1) as the number such that Texp(wk, y) =
T (k). We also define zk as zk = wk�k.

For any oracle query z of size k, (a) if z ≤ zk,
7 then the result of the experiment

is ‘timeout’ and (b) if z > zk, then the result of the experiment is ‘yes’. Notice
that zk is precisely the result of the algorithm for input k and as such, by knowing
zk, we can obtain the result of any experiment of size k (in the infinite precision
case) without having to perform it. This is the core idea of the two following
proofs.

Theorem 5.1. If A is a set decidable by a BBE machine with infinite pre-
cision in polynomial time and the chosen time schedule is exponential, then
A ∈ P/ log2�.

Proof: Suppose that A is decided by a BBE machine M in polynomial time,
with exponential time schedule T . Since T is exponential and the running time
is polynomial, we conclude that the size of the oracle query grows at most loga-
rithmically in the size of the input word, i.e., there are constants a, b ∈ N such
that, for any input word of size n, the computation of M only queries words
with size less than or equal to a�log(n)�+b. Consider the advice function f such
that f(n) encodes the word z1#z2# · · ·#zt, where t = a�log(n)�+b. We observe
that f is a prefix function and |f(n)| ∈ O(t− 1+

∑t
i=1 i) = O(t2) = O(log2(n)).

Furthermore, we can use f(n) to determine the answer to any possible oracle
query of size less than a�log(n)� + b. To decide the set A in polynomial time
with advice f , simply simulate the original machine M on the input word and,
whenever M is in the query state, simulate the experiment by comparing the
query word with the appropriate zi in the advice function. As this comparison
can be done in polynomial time and M runs in polynomial time too, we conclude
that A can be decided in polynomial time with the given advice. �
Observe that wk ↘ y, where y is the unknown mass. As we are going to see,
under some extra assumptions on the time schedule, the value of zk+1 can be
obtained by adding to the word zk a very few bits of information, shortening the
encoding to O(log(n)) bits.

7 This comparison can be seen either as a comparison between reals — the mass values
—, or as a comparison between binary strings in the lexicographical order — the
corresponding dyadic rationals.
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Theorem 5.2. If A is a set decidable by a BBE machine with infinite precision
in polynomial time and the chosen time schedule is T (k) ∈ Ω(2k/2),8 then A ∈
P/ log�.

Proof: Since T (k) ∈ Ω(2k/2), it follows that there exist constants σ, k0 ∈ N such
that T (k) ≥ σ2k/2, for k ≥ k0. By Proposition 3.1 (2) (b1) and (c), we can ensure
that the value of the boundary number wk is such that y < wk < y+2−k+c, for
some constant c ∈ N and for k > k0. This means that, when we increase the size
of k by one bit, we also increase the precision on y by one bit. Let us write the
dyadic rational zk as the concatenation of two strings, zk = xk ·yk, where yk has
size c and xk has size k − c. Note that wk − 2−k+c < xk < wk, i.e. |xk − y| <
2−k+c. The bits of xk provide information about the possibilities for the binary
expansion of y. We show that we can obtain xk+1 from xk with just two more bits
of information. Suppose that xk ends with the sequence xk = · · · 10�. The only
two possibilities for the first k−c bits of y are · · · 10� or · · · 01�. Thus, xk+1 must
end in one of the following: xk+1 = · · · 10�1 or xk+1 = · · · 10�0 or xk+1 = · · · 01�1
or xk+1 = · · · 01�0. That is, even though xk is not necessarily a prefix of xk+1,
it still can be obtained from xk by appending some information that determines
which of the four possibilities occur. We define the function f(n) as follows:
(a) if n < k0, then f(n) = z1#z2# · · · #znn, (b) f(k0) = f(k0 − 1)#xk0##yk0 ,
and (c) if n > k0, then f(n) = f(n− 1)##b1b2yn, where the bits b1b2 are used
to determine one of the four possibilities for xn with respect to xn−1. Observe
also that from f(n) one can recover the values of zk, for all k ≤ n. Moreover,
|f(n)| is linear in n, since all yk have size d. Since A is decided by a BBE
machine M in polynomial time and T is exponential, the size of the oracle
query grows at most logarithmically in the size of the input word. There are
constants d, e ∈ N such that, for any input word of size n, the computation of
M only queries for words with size less than or equal to d�log(n)�+e. We define
the advice function g : N → {0, 1}� such that g(n) = f(d�log(n)� + e). Note
that |g(n)| = O(log(n)) and g(n) can be used to determine the result of any
oracle query for any computation for any input word of size less than or equal
to n. Then, as in the proof of Theorem 5.1, we can devise a Turing machine that
decides A in polynomial time using g as advice, witnessing that A ∈ P/ log�. �

5.2 BPP// log2� Is an Upper Bound for the Unbounded Precision
Case

Our next step is to prove that any set decidable using a BBE machine with
unbounded precision in polynomial time can also be decided in polynomial time
using an advice of a particular size. Given a BBE machine M, we construct
an advice function f with the following properties: (a) for any n, f(n) contains
enough information to answer all queries occurring during the computation ofM
on a word of size n and (b) the size of f(n) grows as slowly as we can accomplish.

8 We define Ω(g) as the class of functions f such that there exist p ∈ N and r ∈ R
+

such that, for all n ≥ p, f(n) ≥ rg(n).
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In the previous section, we made the observation that a dyadic rational zn of
size n could be used to answer all oracle queries of size up to n. Thus, using an
exponential time schedule, we could simulate any polynomial time computation
having the oracle replaced by an advice containing a logarithmic number of zn’s.
Given a threshold oracle (that is, an oracle with two possible random answers),
we can depict the sequence of the answers in a binary tree, where each path is
labelled with its probability. The leaves of these trees are marked with an accept
or reject. Then, to get the probability of acceptance of a particular word, we
simply add the probabilities for each path that ends in acceptance. The next
basic idea is to think of what would happen if we change the probabilities in the
tree. This means that we are using the same procedure of the Turing machine,
but now with a different probabilistic oracle. Suppose that the tree has depth
t and there is a real number ρ that bounds the difference in the probabilities
labelling all pairs of corresponding edges in the two trees. Proposition 2.1 of [4]
states that the difference in the probabilities of acceptance of the two trees is
at most 2tρ. (Motivation from the automata theory comes from von Neumann’s
article [13].)

Recall the sequence of real numbers wk such that wk is the solution to the
equation Texp(wk, y) = T (k). This means that wk is the mass in which the
time taken for the experiment to return a value equals the time scheduled for
an experiment with a query of size k. The numbers wk verify two important
properties. First, if we round down wk to the first k bits, we get zk. That is,
zk ≤ wk < zk + 2−k. Remember that zk is the result of the algorithm of Figure
2 for input k, or alternatively, is the biggest dyadic rational of size k for which
the result of the experiment is ‘timeout’ (see Proposition 3.1 (1)). The second
property is that, when performing the experiment Mass(zk) in Figure 2, since
the mass z′ is uniformly sampled from the interval (zk − 2−k, zk + 2−k), the
probability of obtaining result ‘yes’ is precisely (zk + 2−k − wk)/(2 × 2−k) =
1/2− (wk−zk)/(2×2−k). From these facts we can conclude that, if we know the
first k+ d bits of wk, then we can obtain an approximation of the probability of
answer ‘yes’ when performing experiment Mass(zk) with an error of at most 2−d.
The same reasoning can be made for the experiment Mass(zk + 2−k), which is
the other dyadic rational of size k for which the experiment is not deterministic.
In this case, the probability of answer ‘yes’ is 1− (wk − zk)/(2× 2−k), and this
value can also be approximated by knowing the first k + d bits of wk, with an
error of at most 2−d. We state without proof the theorem of this section:9

Theorem 5.3. If A is a set decided by a BBE machine in polynomial time with
unbounded precision and exponential time schedule T , then A ∈ BPP// log2�.

5.3 BPP// log2� Is an Upper Bound for the Finite Precision Case

We now establish an upper bound for the class of sets decided by BBE machines
with finite precision in polynomial time. Theorem 5.4 has a proof that follows

9 The proof of this theorem and of Theorem 5.4 can be found in the full paper on
threshold oracles, available on demand.
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the same lines of the proof of Theorem 5.3. We discuss now how the bits of the
probability distribution can be computed. The numbers wk are defined as in the
beginning of Section 5.2. The following proposition is straightforward:

Proposition 5.1. For any dyadic rational z of size k let P (z) be the probability
of obtaining answer ‘yes’ when performing the experiment with test mass z,
unknown mass y, finite precision ε, and time schedule T .

P (z) =

⎧
⎨

⎩

0 if z < wk − ε
1
2
+ z−wk

2ε
if wk − ε ≤ z < wk + ε

1 if wk + ε ≤ z
.

Our advice function will contain dyadic rational approximations of wk and ε
that will be used to compute approximations to P (z) up to 2−e, for some e ∈ N

and for any dyadic rational z of size k. Let d be an integer such that 2−d ≤ ε,
and let w′

k and ε′ be wk and ε rounded up to the first d + e and d+ e + 1 bits,
respectively. We can then compute (z −wk)/2 with precision 2−d−e−1 and P (z)
with error less than 2−e. The number of digits required grows linearly with the
precision desired on P (z) that in its turn increases logarithmically with the size
of the input word. We conclude that, for queries of size less than or equal to
that of z, only a logarithmic amount of bits of P (z) is required. Again, we state
without proof:

Theorem 5.4. If A is a set decided by a BBE machine in polynomial time with
fixed precision and an exponential time schedule, then A ∈ BPP// log2�.

6 Conclusions

We have introduced methods to study the computational power of threshold
systems, such as the neurone or photoelectric cells, for which quantities can only
be measured either from below or from above. We showed that Turing machines
equipped with threshold oracles in polynomial time have a computational power
between P/ log� and BPP// log2�, no matter whether the precision is infinite,
unbounded or fixed. We expect that hybrid systems in general cannot transcend
such computational power and that this computational power stands to hybrid
systems as the Church-Turing thesis is to Turing machines. Our result weakens
the claims of other classes associated with models of physical systems (see, e.g.,
P/poly in [12]). In studying two-sided experiments (as in [6]), we saw that an
oracle answer such as ‘left’ would imply that z < y and an oracle answer
such as ‘right’ would imply that z > y, where y is the unknown mass and z
the test mass. In a threshold experiment, we saw that the oracle answer ‘yes’
would imply that z > y. However, there exists yet another type of physical
experiment, the vanishing experiment, in which the answer ‘yes’ implies only
that z �= y. An example is the determination of Brewster’s angle in Optics: in
the lab measurement of the critical angle of incidence of a monochromatic light
ray into the surface of separation of two media such that there is a transmitted
ray but no reflected ray. Vanishing experiments are a new type of measurement to
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investigate. We think that our model captures (i) the complexity of measurement
and the limits to computational power of hybrid systems and (ii) the limits of
what can be measured (such as in [6]). Reactions towards a gedankenexperiment,
such as measuring mass as in Section 2, as an oracle can express dissatisfaction
as such idealized devices cannot be built. Unfortunately, there seems to be a
diffuse philosophy that considers the Turing machine an object of a different
kind. Clearly, both the abstract physical experiment and the Turing machine are
gedankenexperiments and non-realizable. To implement a Turing machine the
engineer would need either unbounded space and an unlimited physical support
structure, or unbounded precision in some finite interval to code for the contents
of the tape. However, the experiment can be set up to some degree of precison in
the same way that the Turing machine can be implemented up to some degree
accuracy. Knowing that both objects, the Turing machine and the measurement
device, are of the same ideal nature, we argue that the models allow us to study
the power of adding real numbers to computing devices, characteristic of hybrid
machines, and the limits of what can be measured.
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