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Abstract—We present a method that can be used to map
control/data flow graphs into fixed-depth pipelines targeted at
FPGA design. The main objective for the design is to reduce
the register resources which are needed to forward data within
the processing pipeline. We show that these requirements can
be reduced by appropriate task scheduling. Starting from an
intuitive network flow based scheduling approach, we develop
a linear programming model of the task scheduling problem.
This allows us to efficiently create schedules which are provably
optimal with regard to the objective of minimal register usage.

I. INTRODUCTION

Ever since their introduction to the market, FPGAs have
gained importance in the field of computing architectures. As
Trimberger shows in detail in [1], FPGAs have been used to
create specialized deeply-pipelined massively parallel designs
for the processing of streaming data, especially since the
early 2000s. The application domains range from classical
communications applications to the control of adaptive optic
systems for telescopes such as the Very Large Telescope (VLT)
operated by the European Southern Observatory (ESO) [2].

Typically, the complete design for one of these applications
consists of several processing pipelines that are partly executed
in parallel and partly consecutively to perform the desired
operation on the data that is streamed through these pipelines.
Pipelines executed in parallel need to be synchronized so
that their respective output, i.e. the input for the following
pipeline, is produced from the same input data. While this
can be achieved using synchronization FIFOs, for our designs
we chose to enforce synchronization by a fixed depth of all
parallel pipelines. Also, for pipelines that hold application
parts that consist of several branches the fixed depth pipelines
make sure that the results are always created after a fixed
amount of clock cycles, regardless of which branch is actually
executed. Therefore, to create an architecture with predictable
timing, in this work we assume that application (sub-)graphs
need to be mapped to fixed depth pipelines.

Such deeply pipelined designs can satisfy high demands
on throughput and computational density. For example a
pipeline with 256 stages and an input data width of 256 bits
clocked at a non-aggressive 125 MHz yields up to 32 Gbps
I/O throughput and 8 Tbit/s of processed data, corresponding
to a 256 GOPS equivalence of 32 bit RISC instructions.

Another trend in recent years is that the amount of data
that needs to be processed is increasing significantly faster
than the computational density, which leads to the so called
data deluge [3]. For the computing architectures, this means
that memory is becoming the bottleneck and that new data
processing applications need to be developed to handle the
sheer amount of data [4]. In order to exploit the advantages
that deeply-pipelined FPGA designs have over other compute
platforms, the data needs to be kept close to the processing. A
typical modern high-end FPGA provides several layers of on-
chip and in-package memory ranging from flip-flops in the
FPGA fabric over block RAM to high-bandwidth memory
(HBM). Compared to the increasing data load that needs to be
processed, the memory resources closest to the FPGA fabric,
including flip-flops, are relatively limited, so one goal for the
system design is to use the available memory resources as
efficiently as possible.

In this paper, we propose a linear program (LP) model for
the scheduling problem in fixed-depth pipelines and detail how
it can be optimally solved so that tasks are placed within the
pipeline in such a way that the overall register demand for data
forwarding within the pipeline is minimized. The experimental
results show that our approach leads to a significant reduction
of the register requirements, when compared to classical
scheduling approaches. So, for data heavy applications where
performance is more often limited due to bottlenecks when
accessing data than through computational performance, this
reduction of register requirements combined with efficient data
placement methods should lead to an improved performance.

The rest of the paper is structured as follows. In section II
we present related work. The problem statement and obser-
vations from preliminary analysis are presented in III. Our
proposed method for register minimization is introduced in
section IV. The feasibility of our method is demonstrated with
the experimental results in section V. Section VI concludes the
paper and presents an outlook on future work.

II. RELATED WORK

A. Using network flow techniques for FPGA design

Cong and Ding made use of network flow techniques
in their Flow-Map technology mapping algorithm [5]. They
represented the Boolean network that needs to be mapped to



the FPGA lookup tables (LUT) as a directed acyclic graph. On
this graph, they used a two-phased mapping algorithm which
applies a graph cut based approach to find an optimal mapping
of graph nodes to LUTs.

In [6] Yang and Wong exploited the similarity between the
problems faced in scheduling of network flow processing and
the partitioning of FPGAs. They proposed a method to model
the netlist of an FPGA design by a network flow and a heuristic
that allows to use the max-flow min-cut technique to create a
min-cut balanced bi-partition, which is a partition that splits
a circuit into two equally sized disjoint sub-components and
minimizes the nets that are needed to connect the two sub-
components.

Tan et.al. [7] presented a scheduling approach for the
use in high-level synthesis (HLS) based on cuts of acyclic
graphs. They used this approach to generate schedules that
minimize latency and reduce area requirements. They achieved
this by simultaneously considering the scheduling and the
technology mapping, which provides more accurate estimates
of an operations execution time and therefore allows a more
aggressive operation chaining.

While these approaches operate on different levels of FPGA
design and are not directly related to register optimization,
they show that it can be a valid approach to use network flow
techniques for partitioning or, in our case, scheduling prob-
lems. Indeed, this idea is not new: results in this direction can
already be found in the work of Fulkerson [8], Kelley [9], and
Levner and Lemirovsky [10]. The mathematical formulation
of our problem is also very similar to the just-in-time project
scheduling problem [11, Sec. 19.5].

B. Optimizing memory aspects of FPGA designs

The work presented in [12] is related to memory optimiza-
tion for HLS for FPGAs. However, Gallo et.al. focused on the
specific problem of partitioning data arrays into memory banks
and proposed a partitioning technique that allows to minimize
the area overhead that is introduced due to control logic for
memory accesses.

The work presented by Atat and Ouaiss in [13] shows
how on-chip embedded memory of modern FPGAs can be
used as registers instead of the flip-flops in logic cells. Their
technique, called Memory Binding, uses the memory banks of
the embedded memory to store data in a manner that avoids
conflicting accesses to the memory banks. With this approach
they increase the amount of logic cells which are available to
implement processing while increasing the utilization of the
embedded memory.

What these approaches have in common is that they focus
on the actual data placement in the FPGA design, whereas our
approach aims to reduce the amount of data that needs to be
stored in the first place.

III. PROBLEM STATEMENT AND PRELIMINARY ANALYSIS

As already stated in section I, our goal is to create register-
optimized fixed-depth pipeline implementations on a FPGA
target for a given task graph. The approach we consider in

this paper is the reduction of used register resources due
to appropriate task scheduling within the pipeline. We will
now formalize the problem statement and present the findings
of preliminary analysis before introducing our scheduling
approach in section IV.

A. Problem statement

Let G = {T,E} be a directed graph consisting of a set of
n tasks T = {Ti | i = 0, 1, 2, . . . , n− 1} and a set of edges
E = {Eij} where Eij exists between two tasks (Ti, Tj) if
these tasks exchange data with a certain probability pij > 0.
This therefore defines the control/data flow graph (CDFG) of
an application. The exchanged data between two tasks Ti and
Tj is denoted Dij and the corresponding data width w (Dij).

In our pipelined design, each task Ti will be executed in one
pipeline stage which is expressed as S (Ti) ∈ {0, 1, 2 . . . d−1}
where d is the depth of the pipeline which we consider as
an application specific constraint given by the target imple-
mentation. Due to the inherent parallel architecture of the
FPGA, there is no hard limit (except for the overall number of
available resources on the FPGA) for the amount of tasks that
can be executed in parallel in one pipeline stage. In contrast,
the amount of tasks that can be executed sequentially within
one pipeline stage is strictly limited by the maximum depth of
the combinational path allowed by the operating frequency, i.e.
the setup constraint of register timing. The sum of execution
times t (Ti) of all Ti that are executed sequentially in one
pipeline stage must not exceed this limit.

From these definitions, the amount of register resources that
are needed to forward the data between pipeline stages can be
expressed as:

#D =

n∑
i=0

n∑
j=0

∆T (Dij) · w (Dij) , (1)

where ∆T (Dij) = S (Tj) − S (Ti) is the lifetime of the
data exchanged between Ti and Tj , i.e. the number of pipeline
stages that Dij needs to be propagated through. As defined
earlier, w (Dij) is the bit width of the data that is exchanged
over edge Eij , so for all combinations of i and j for which
no edge exists this width is 0.

The goal of our work is to minimize #D for a given
graph G by choosing a proper S (Ti) for all tasks in G,
while maintaining a valid schedule which respects all data
dependencies between the tasks inside the pipeline.

B. Scheduling Basics

The two extremes, when statically scheduling a task graph
to a fixed-depth pipeline, are the as soon as possible (ASAP)
and the as late as possible (ALAP) schedules. In the ASAP
case the scheduling starts from pipeline stage 1. For each task
Ti, it is checked whether all tasks that produce input data for
this task have already been scheduled. If this is the case, it is
checked whether the current task can be added to the current
stage without violating the constraint of maximum sequential
execution time. Then the task will either be scheduled in the
current stage or, if this is not possible, in the next stage.



This process is repeated iteratively until all tasks have
been assigned to a pipeline stage. In our case of fixed-depth
pipelines, the task(s) that produce the graphs output are always
scheduled in stage d.

For illustrative purposes, we use the graph shown in fig-
ure 1a. It consists of the tasks {Ti | i = 0, 1, . . . , 8} with the
corresponding edges between the tasks. Furthermore, without
loss of generality, we assume that each task Ti has an
execution time t (Ti) that does not allow to execute more than
one task consecutively within a given pipeline stage. The data
width wi,j for all edges is given in the figure.

The ASAP schedule created for the graph under the given
assumptions for a pipeline depth of d = 8 is listed in table I.

The ALAP schedule can be built similarly to the ASAP
schedule with the difference that the process is started with the
last stage and for each task it is checked whether all succeeding
tasks have already been scheduled. The ALAP schedule for the
example graph can also be found in table I.

The mobility µi = µ (Ti) of a task Ti is defined as
the number of possible pipeline stages where Ti can be
executed in a valid schedule. It can be expressed as µi =
SALAP (Ti)−SASAP (Ti). The implication of a µi > 0 is that,
when creating a schedule, there are several pipeline stages that
Ti can be mapped to. So we can influence S (Ti) and therefore
the ∆T for all data that is either produced or consumed by
Ti. As shown in (1) the overall amount of data that needs
to be propagated within the pipeline is given by the sum of
∆T (Dij) ·w (Dij) for all data that is exchanged between the
tasks of the graph. As the widths of the edges are fixed, we
can only minimize #D through the appropriate selection of
S (Ti) for each task.

C. Minimum Cut Scheduling

A first rather intuitive approach that can be considered
comes from the max-flow min-cut theorem [14]. This provides
us with two sub-graphs that are chosen in such a way that the
weights of the edges between the two sub-graphs are minimal.
We then scheduled the first sub-graph in an ASAP fashion
and the second in ALAP fashion, so that the data forwarded
through empty pipeline stages has minimal width.

This approach is very similar to the multiprocessor schedul-
ing solution presented in [15] where it was proven that the
max-flow min-cut theorem can be used to find an optimal
scheduling of a task graph to two different processors based
on the edge weights and also similar to methods such as [16],
[17] and [18]. However, we are not scheduling tasks to fixed
processors, but interpret the two sub-graphs as schedule groups
which we then use to create a register-optimized schedule for
a pipelined FPGA architecture.

When we apply this method to the example graph from
figure 1a, the min-cut leaves us with the following two task
sets:

1) T0, T1, T2, T3, T4, T5
2) T6, T7, T8

The first set which contains the tasks above the cut will
be scheduled in ASAP fashion and the tasks below the cut

will be scheduled ALAP. This gives us the min-cut schedule
as shown in table II. Using the definition in (1), we can
obtain the amount of register resources needed for each of
the schedules as #DASAP = 416 bits, #DALAP = 760 bits
and #Dmin−cut = 400 bits.

i 0 1 2 3 4 5 6 7 8
SASAP (Ti) 0 1 1 2 2 3 3 4 7
SALAP (Ti) 0 6 3 4 4 5 5 6 7

TABLE I
ASAP AND ALAP SCHEDULE FOR FIG. 1A (d = 8)

i 0 1 2 3 4 5 6 7 8
Smin−cut (Ti) 0 1 1 2 2 3 5 6 7

TABLE II
MIN-CUT SCHEDULE FOR FIG. 1A (d = 8)

However, it turned out that the min-cut approach can lead
to schedules that are invalid as they do not respect data
dependencies. The graph shown in figure 1b and the corre-
sponding min-cut schedule in table III illustrate this problem.
For example, task T1 is scheduled in stage 3 whereas task T2,
which depends on input data from T1, is scheduled in stage 1,
so data dependencies cannot be fulfilled.

i 0 1 2 3 4 5 6 7
Smin−cut (Ti) 0 3 1 4 2 5 3 6

TABLE III
MIN-CUT SCHEDULE FOR FIG. 1B (d = 7)

D. Minimum Dicut Scheduling

To prevent the creation of these invalid schedules, the
minimum dicut instead of the minimum cut can be used [19].
The difference between a cut and a dicut is that the dicut
takes into account the direction of edges and does not allow
the creation of backwards edges. Using the min-dicut we can
obtain a valid schedule for the graph from figure 1b as shown
in table IV.

i 0 1 2 3 4 5 6 7
Smin−dicut (Ti) 0 1 2 2 3 3 4 6

TABLE IV
MIN-DICUT SCHEDULE FOR FIG. 1B (d = 7)

While the min-dicut solves this problem, unfortunately for
certain graphs it can lead to schedules that in the end use more
register resources than the simple ASAP or ALAP schedules.
For example the min-dicut schedule for the graph shown in
figure 1c leads to a register requirement of 336 bits whereas
the ASAP schedule needs 288 bits. The problem here is that
while the min-dicut minimizes the edge widths between the
two subgraphs generated by the cut, the data propagation
within the subgraphs is not optimal. One approach to handle
this problem would be to apply the min-dicut scheduling
method in a recursive fashion. However, we chose another
path which enables us to formally prove the optimality of the
created schedules.
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Fig. 1. Example graphs (edge widths in bit)

IV. PROPOSED METHOD

With a deeper analysis, it appears that we can exploit struc-
tural properties of our problem in order to design algorithms
which are both efficient and provably optimal. If we introduce
a variable S(Ti) denoting the execution stage of the i-th task
as in Section III-A, then our goal is to solve the following
integer program.

min

n−1∑
i=0

n−1∑
j=0

w(Dij)(S(Tj)− S(Ti)) s.t. (2)

S(Tj)− S(Ti) ≥ 1 for each edge Eij , (3)
S(T0) = 0, (4)

S(Tn−1) = d− 1, (5)
S(Ti) ∈ {0, . . . , d− 1} for each task Ti. (6)

Notice that we have a constraint of type (3) for each edge in
the directed graph G, which enforces that task Tj is executed
after task Ti. Constraints (4) and (5) enforce the scheduling
stage of the first and last tasks, whereas (6) enforces that each
task must be executed at some pipeline stage within the depth
limit.

Using classical results in the theory of combinatorial op-
timization (see e.g. [20, Ch. 19] for a detailed exposition of
this reasoning), we can first observe that the constraint matrix
associated with (3) is the (transpose of the) node-arc incidence
matrix of G; thus, it is a totally unimodular matrix (i.e. each
of its subdeterminants is 0, +1 or −1).

Now let us consider the linear relaxation of our problem,
which is obtained by replacing the constraints of type (6) with

0 ≤ S(Ti) ≤ d− 1 for each task Ti. (6’)

Since (3) defines a totally unimodular matrix, so does
the system (3)+(4)+(5)+(6’). As an immediate consequence,
all vertices in the corresponding polytope are integral. This
implies that an optimal vertex of the linear relaxation will
also be an optimal solution to the original problem. As linear
programming can be solved efficiently, this approach is both
efficient and provably optimal (since it can be solved with the
simplex algorithm which provides guarantee of optimality).

It is also worth mentioning that one could design combina-
torial algorithms via linear programming duality. Indeed, by
considering the dual program of our linear relaxation, we can
write it down as a minimum cost flow problem, for which
efficient network simplex algorithms are known to exist [11,
Ch.11].
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V. EXPERIMENTAL RESULTS

A. Experimental setup

To illustrate the effect of the register minimizing scheduling
we implemented a simulation framework in Python. This
framework provides methods to create ASAP, ALAP and
optimized schedules for a given pipeline depth and graph.
For our tests, we used random directed graphs generated with
the Erdős-Rényi G (n, p) model [21]. The graphs generated
by this model can be tuned using the two parameters n
and p, where n is the number of nodes in the graph and
p defines the probability with which each of the possible
edges between the graph nodes is included in the graph.
The data width for each edge is randomly selected from the
set {8 bits, 16 bits, 32 bits, 64 bits}. By carefully selecting the
values for n and especially p it is possible to create random
graphs that have properties similar to typical CDFGs. Besides,
without loss of generality, we consider the graphs to have a
single source and a single sink node. We ran simulations for
several values of n, p and the pipeline depth (while making
sure that the pipeline depth is sufficient to hold the graph). In
the following subsections we present our findings regarding
the effects of the different parameters on the performance of
our approach. In each subsection we give further details on
how we chose the variables for our investigations.

B. Comparison to ASAP

The graph in figure 2 shows the distribution of relative
savings regarding the number of register bits compared to
ASAP schedules. The numbers were obtained for a set of 100
different random graphs. The graphs have been generated with
the parameters n = 50 and p = 0.1 and the schedules for these
graphs have been created for a pipeline depth of 64 stages.

Statistical observations show that the maximum difference
found in this set is a requirement for the optimal LP approach
of 10 576 bits compared to 18 152 bits in the ASAP case,
which is a relative reduction of 41%. The minimal observed
reduction for a given graph was found when comparing the
LP approach (12 248 bits) with the ASAP case (12 600 bits),
which is a relative reduction of 2.7%. The average reduction
for this sample set of graphs is 15.3% with a standard deviation
of 8.7%.
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C. Influence of the number of nodes in a graph

To compare the performance of our approach for graphs
of different sizes, we analyze the results shown in figure 3.
The depicted information was obtained for graphs created with
different values of n. To make sure that each graph can be
scheduled, we also had to adapt the pipeline depth accordingly.
So the numbers shown here are for the following (n, d)-tuples:
(n = 10, d = 16), (n = 20, d = 32), n = 50, d = 64),
(n = 80, d = 96), (n = 100, d = 128). The value of p =
0.1 was kept constant. For each parameter set we performed
simulations for 100 random graphs. The data shows a trend
that the maximum and average relative resource savings are
larger for smaller numbers of n.

D. Influence of the graph density

To inspect the effect that the graph density, i.e. the amount
of edges in the graph has on the register optimized schedul-
ing, we performed simulations for different values of p. As
mentioned before in the G (n, p) model, the parameter p is the
probability with which each of the possible edges between the
graphs nodes is actually included in the graph. So the lower
the value for p, the lower is the number of edges in the graph.
For example with p = 0.01 the average amount of edges for a
graph with 50 nodes is 12.5 whereas for p = 0.5 the average
number of edges is 611.

Figure 4 shows the relative savings obtained for different
values of p in the range from 0.01 to 0.5. Once again the
relative reduction is compared to the ASAP schedule. The
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values presented here are based on simulations with 100
different graphs per value of p.

It is clear from the figure that the LP-based schedule
performs much better for graphs with a low density. However,
this is exactly the kind of graphs that a typical CDFG is a
representative of. In these graphs the nodes are typically not
connected to a large number of others, but each node has a
very limited number (< 10) of predecessors and successors.
Therefore, the proposed approach is well-suited to create
pipeline schedules for real-life application graphs that will
minimize the register resource requirements.

E. Influence of the pipeline depth

Figure 5 shows the relative savings obtained for random
graphs with 20 nodes, an edge probability of p = 0.1
and 10 different pipeline depths ranging from 30 to 120.
The maximum saving is always above 50% for the different
pipeline depths and, in average, the savings are above 20%.
Overall the pipeline depth does not have a significant impact
on the proposed scheduling method.

In conclusion, with the findings from our experimental
results, we can say that our proposed scheduling method leads
to significant savings in register resources compared to ASAP
and ALAP schedules and is well-suited for graphs with a
limited number of nodes and a low graph density, both of
which are properties found in typical CDFGs.

VI. CONCLUSION

In order to enable efficient FPGA implementations of
streaming applications that operate on high-volume data, it
is key to make efficient use of the limited memory resources
available on the FPGA. In this paper we presented a linear
model which can be solved optimally to reduce the register re-
source requirements for fixed-depth pipeline designs. This can
be seen as a first step towards an overall memory optimized
FPGA implementation. As a next step in our ongoing research,
we strive to optimize the mapping of data to the different
types of memory available on the FPGA board (Flip-Flops,
BRAM, DRAM). This mapping needs to be performed in a
way that optimizes the utilization of the available bandwidth
for each memory type. The combination of reduced data

forwarding and optimized bandwidth utilization will then lead
to an overall memory optimized design.
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