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Abstract. Competition between one-way car-sharing operators is currently increasing.
Fleet relocation as a means to compensate demand imbalances constitutes a major cost
factor in a business with low profit margins. Existing decision support models have so far
ignored the aspect of a competitor when the fleet is rebalanced for better availability. We
present mixed-integer linear programming formulations for a pickup and delivery orien-
teering problem under different business models with multiple (competing) operators.
Structural solution properties, including existence of equilibria and bounds on losses as a
result of competition, of the competitive pickup and delivery problem under the restric-
tions of unit-demand stations, homogeneous payoffs, and indifferent customers based on
results for congestion games are derived. Two algorithms to find a Nash equilibrium for
real-life instances are proposed. One can find equilibria in the most general case; the other
can only be applied if the game can be represented as a congestion game, that is, under the
restrictions of homogeneous payoffs, unit-demand stations, and indifferent customers. In a
numerical study, we compare different business models for car-sharing operations, includ-
ing a merger between operators and outsourcing relocation operations to a common
service provider (coopetition). Gross profit improvements achieved by explicitly incorpo-
rating competitor decisions are substantial, and the presence of competition decreases
gross profits for all operators (compared with a merger). Using a Munich, Germany, case
study, we quantify the gross profit gains resulting from considering competition as ap-
proximately 35% (over assuming absence of competition) and 12% (over assuming that the
competitor is omnipresence) and the losses because of the presence of competition to be
approximately 10%.
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1. Introduction
Car-sharing is an economically and environmentally sus-
tainable alternative to private car ownership and a sup-
plement to public transportation (Bellos, Ferguson, and
Toktay 2017). With a larger number of car-sharing offers
around the world, competition increases. In several cities,
more than one car-sharing operator offers its service to
customers (Kortum et al. 2016), and mobility-as-a-service
apps allow customers to book any vehicle regardless of
the operator. Some operators are starting to merge their
companies and fleets, most recently Car2Go and Drive-
Now (now called “ShareNow”) (BMW Group 2018).

Soon after, the former DriveNow shareholder Sixt
launched a car-sharing service, “Sixt Share,” that com-
petes with ShareNow (Sixt 2019). Perboli et al. (2018)
report frequent changes in the Turin market with Blue-
Turino entering the market and competing with Car2Go
and Enjoy as IoGuido withdrew service. Although the
body of literature on the optimization of car-sharing op-
erations is growing, it mostly has ignored the choice of
business and operational models under competition so
far (with exceptions Albiński and Minner 2019, Balac
et al. 2019). In addition to the merger (and, thus, a mo-
nopoly) as currently pursued by DriveNow and Car2Go
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and direct competition, such as between Sixt Share and
ShareNow, operators can cooperate in parts of their op-
erations. For example, they can hire a third party that re-
locates vehicles for them, or both operators relocate ve-
hicles such that the overall gross profit is maximized
(but still use different workers for rebalancing). We call
these modes “coopetition” and “welfare maximization.”
Ghosh et al. (2017) report outsourced relocation opera-
tions in bike-sharing. Brook (2004) reports a collabora-
tion between different car-sharing operators concerning
other aspects, such as billing. In practice, operators fre-
quently ignore competition with respect to relocation.
Mostly, they do not even consider the current location of
vehicles of the competitor, which can be accessed using
web-scraping techniques or accessing publicly available
application programming interfaces (Kortum et al. 2016,
Trentini and Losacco 2017), let alone foresee how the
competitor rebalances those vehicles (which could be de-
rived from historic data). Incorporating the reaction of a
competitor on one’s own routing and servicing decision
is paramount for profitable operations, in particular, if
fleets are small and margins are low. Operators may ser-
vice the same customer, thereby reducing the individual
payoff but still incurring relocation costs.

A particular focus of this work is rebalancing, which
shows significant potential for cost reduction in car-
sharing systems (Jorge and Correia 2013). One-way car-
sharing comes at the cost of unevenly distributed fleets
as some locations (such as shopping malls) are more
frequently the point of origin of a car-sharing trip than
of its destination (or vice versa). To cause as little cus-
tomer dissatisfaction as possible and, thus, as few lost
sales as possible, vehicles are relocated (predominantly
by pooling multiple rebalancing operations during the
night; Weikl and Bogenberger 2015). Vasconcelos et al.
(2017) report a positive impact of relocation on the prof-
itability of a car-sharing service. They state that a car-
sharing service is only profitable if relocations are per-
formed. Consequently, nonoptimal car-sharing reloca-
tions (or relocations that do not consider competition)
can easily result in negative profits.

We answer three research questions and contribute
algorithmically to solution methods for carsharing re-
location under competition.

1. How much can operators gain from considering
the presence of competition in their rebalancing opera-
tions with regards to gross profits? Put differently, what
is the price of ignoring the presence of competition?

2. How much is lost by competing in comparison
with jointly optimizing fleet rebalancing with regard to
gross profits, and how do alternative business models
under competition compare with each other?

3. Which parameters drive the gains from consider-
ing competition and the losses resulting from the pres-
ence of competition?

We briefly address the research questions analyti-
cally under some technical assumptions (giving
bounds on gains and losses) and study the full gener-
ality of the model in an extensive numerical study.

Methodologically, we present models and solution
algorithms to tackle the aforementioned research
questions. We give complexity as well as average case
algorithmic performance results. Advantages and
drawbacks that the solution algorithms and model
formulations entail are studied. We devise a simpli-
fied model for car-sharing relocation that incorporates
the movements of vehicles as well as the movements
of the workers who relocate them. This model is called
the pickup and delivery orienteering problem
(PDOP). A feasible solution to the PDOP takes two de-
cisions simultaneously: First, it determines which ve-
hicles are moved and which stations are serviced with
how many vehicles (customer demand is given in a
previous step, e.g., by using a demand-prediction
model as reviewed in Vosooghi et al. 2017). Second, it
specifies which route relocation workers take to per-
form those relocations. We then create variations of
this model to facilitate the special features of different
business models under competition: operators can ei-
ther compete directly (C-PDOP), jointly optimize their
rebalancing (W-PDOP), merge their fleets completely
(M-PDOP), or outsource their relocation operations to
a third party (Coop-PDOP).

We choose pure strategy Nash equilibria as the so-
lution concept (as opposed to mixed strategy Nash
equilibria in which players randomize over a set of
strategies), which is a single routing and servicing
choice rather than a combination of multiple choices.
Mixed strategy Nash equilibria provably exist in the
C-PDOP because the number of pure strategies is fi-
nite (Nash 1951). Pure strategy Nash equilibria repre-
sent a more intuitive, easier-to-implement solution for
the car-sharing operators. They represent a less con-
troversial concept of competition and are more likely
to be adopted by car-sharing operators. Pure strategy
Nash equilibria provably exist subject to three as-
sumptions: player homogeneous payoffs, unit de-
mand stations, and indifferent customer choice. For
the C-PDOP with these assumptions, we present
structural properties and performance guarantees (al-
gorithmic and with respect to profitability) and show
average case performances in a numerical study. The
numerical study also considers the influence of
relaxing the assumptions.

To solve the C-PDOP, we present two different al-
gorithms: iterated best response (IBR) and potential
function optimizer (PFO). Although IBR is faster on
most instances and can be used even for the general
model in which pure strategy Nash equilibria are not
guaranteed to exist, PFO returns higher profit Nash
equilibria, on average, and has a higher degree of
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fairness with respect to how profits are distributed be-
tween operators. Both algorithms draw upon the fact
that the C-PDOP with player homogeneous payoffs,
unit demand stations, and indifferent customer choice
belongs to the class of congestion or potential games
introduced in Rosenthal (1973) and Monderer and
Shapley (1996).

The remainder of this paper is structured as follows.
In Section 2, we discuss the literature and how it re-
lates to the (competitive) pickup and delivery orien-
teering problem. Section 3 presents the model for the
PDOP and extensions for the various business models.
It also investigates properties of these models. In Sec-
tion 4, we present the IBR and the PFO to find a pure
strategy Nash equilibrium of the C-PDOP if it exists.
In Section 5, we test the aforementioned algorithms
on several different, artificially generated instances
and a Munich, Germany, case study before conclud-
ing the paper in Section 6. All proofs can be found in
the appendix.

2. Literature Review
The (competitive) pickup and delivery orienteering
problem is related to three different streams of litera-
ture. In recent years, there has been a growing body of
literature in the field of optimal car-sharing operations;
we focus on papers that present different rebalancing
approaches. Second, a few papers already discuss rout-
ing or rebalancing problems under the presence of com-
petition. Third, our work draws upon findings in the
field of routing, namely pickup and delivery problems
and traveling salesman problems (TSPs) or vehicle rout-
ing problems (VRPs) with profits.

2.1. Car-Sharing Operations
Research in car-sharing operations predominantly fo-
cuses on the tactical problem of setting the proper in-
ventory levels or vehicle stock in a region (Nair and
Miller-Hooks 2011; He, Hu, and Zhang 2020) or on in-
centivizing users toward rebalancing the system
themselves by adapting their travel behavior (e.g.,
Ströhle, Flath, and Gärttner 2019). Some research also
focuses on the underlying VRP (see Laporte, Meunier,
and Calvo 2015, 2018 for overviews). Krumke et al.
(2013) study the k-convoy pickup and delivery prob-
lem in which vehicles are relocated by k drivers. They
study the problem in both static and dynamic settings,
presenting approximation algorithms for both cases.
Bruglieri, Colorni, and Luè (2014) study the electric
vehicle relocation problem as a variant of the one-skip
relocation problem and the roll on–roll off problem.
For their Milan case study, they report that two work-
ers are sufficient to fulfill, on average, 86% of 30 relo-
cation requests. When maximizing the profit rather
than a service level, they observe that a “fixed revenue

component” (future revenue of satisfied customers)
per served customer must be at least 15e to ensure
that enough rebalancing occurs to serve most of the
customers (Bruglieri, Pezzella, and Pisacane 2017).
Recent work addresses challenges in repositioning
autonomous vehicles, such as having to consider
matching demand and supply rather than finding an
optimal route. Unlike worker-based relocation, auton-
omous relocations are mainly performed during the
day and, thus, require online algorithms (i.e., Cepolina
and Farina 2014; Fagnant, Kockelman, and Bansal 2015;
Pavone 2015).

2.2. Competitive Routing and
Rebalancing Models

Only few studies take a competitive view on rebalanc-
ing car-sharing operations, and those take a tactical
rather than an operational point of view or consider
pricing instead of routing. Albiński and Minner (2019)
calculate the number of vehicles that are to be relo-
cated to reach an equilibrium under demand uncer-
tainty (inventory transshipment problem). They do
not focus on the actual routes of workers who relocate
the vehicles (operational routing problem). Balac et al.
(2019) use an agent-based model to derive optimal
prices for two car-sharing operators and other op-
tions, such as walking or public transport. They
provide insights into whether it is advisable to addi-
tionally rebalance vehicles during the course of the
day. They observe that charging the same (compara-
bly high) price is most profitable for both operators.
However, high prices are unstable as operators benefit
from offering lower prices than their competitors.
They state that relocations during the course of the
day are unprofitable and further observe that reloca-
tion in the presence of competition primarily benefits
the competitor who does not rebalance. The origin of
this “free-rider” phenomenon, however, is demand
during the relocation operations and the selection
of a simple policy-based heuristic for relocation.
Both simplifications do not apply in our model. The
two aforementioned papers are restricted to the
two-operator case. For the ridesharing sector with a
variable number of operators, Pandey et al. (2019)
argue that competition decreases the efficiency as
well as the quality of service and show that even lit-
tle cooperation can substantially increase the ser-
vice quality. Their main focus, however, is not on
rebalancing during the night, but on assigning cus-
tomers to routes and the subsequent online rerout-
ing of vehicles.

2.3. Routing Problems for Rebalancing
In the PDOP, the goal is to find optimal routes for op-
erators who relocate their vehicles; thus, the PDOP is
related to other routing problems, in particular pickup
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and delivery problems (see Berbeglia et al. 2007 for a
comprehensive overview and classification) and TSPs
with profits (see Feillet, Dejax, and Gendreau 2005;
Vansteenwegen, Souffriau, and Van Oudheusden
2011; Archetti, Speranza, and Vigo 2014 for over-
views). Following the classification by Berbeglia et al.
(2007), we identify the PDOP as a one-commodity
VRP. So far, there is neither a combination of the prof-
itable tour problem with pickups and deliveries nor a
bipartite profitable tour problem to be found in the lit-
erature. In addition to a formulation of TSPs with pick-
up and deliveries and with profits, our paper relates to
the literature on lateral inventory transshipment (see
Paterson et al. 2011 for an overview) focusing on opera-
tional decisions in a unidirectional inventory trans-
shipment problem in a single echelon. Lien et al. (2011)
compare different setups of the inventory transship-
ment graph with a particular focus on “chains,” that is,
circular setups in which facilities can only exchange in-
ventory with their direct neighbors. They state that bidi-
rectional chains are more efficient than unidirectional
chains, which again are more efficient than other setups
with fewer links within the same echelon. We observe
similar efficiency gains when comparing competitive
solutions in which every operator rebalances for the op-
erator’s self (thus, resulting in substantially fewer arcs)
to the monopoly or coopetition solution.

3. Model
In the following, we first present a master model for
car-sharing relocation. We then instantiate this model to
a competitive variant (C-PDOP), a monopoly variant
(M-PDOP), and a coopetition variant (Coop-PDOP) and
discuss properties of these problems.

3.1. Pickup and Delivery Orienteering Problem
In our car-sharing model, each of N operators knows
the operator’s current fleet distribution and wants to re-
balance it, assuming that no customers are requesting ve-
hicles during the process. We use index n � 1, 2, : : : ,N to
refer to each of the operators. In car-sharing systems,
such relocations are usually performed periodically dur-
ing each night and when customer demand is low
(Weikl and Bogenberger 2015). To rebalance the opera-
tor’s fleet, operator n sends workers who drive the ve-
hicles from their current location to another location
where they are expected to incur a higher payoff. The
overall goal of an operator is to maximize the opera-
tor’s gross profit (profit of a given fleet), defined as
payoffs minus operational costs. The payoffs depend
on the presence of competition. Although the strategy
of the competitors need not be known, all operators
must be aware of the payoff functions of all competi-
tors and assume that their competitors act rationally
and payoff maximizing.

3.1.1. Stations, Locations, and Payoffs. Each operator
has a set of stations, Dn, at which the operator can
place vehicles. The sets of stations of two different op-
erators are not necessarily disjoint as operators may
place stations very close to each other or even at the
same location (e.g., at public transit stops or the trade
fair). Each station is then referred to as ι ∈D,D � ⋃

nDn.
We assume that the operators employ forecasting mod-
els and, thus, estimate the expected customer demand
in each station, allowing them to predict if vehicles shall
be moved to or removed from this station (but not both
simultaneously). Each operator n chooses, for each sta-
tion ι, the number qιn of vehicles to place there. For ev-
ery station ι, operator n has an estimate of the payoff
function πι

n(qι), where qι � (qι1,qι2, : : : ,qιN) is the vector
that describes the number of vehicles placed by each
operator n at station ι. The quantity πι

n(qι) captures the
direct (expected) revenue from setting a vehicle at this
location given the availability of competitors qι, minus
the direct (expected) costs, such as fuel and wear, but it
does not include rebalancing costs, which are modeled
using a different term.

We use the standard game-theoretic notation of qι−n
to denote the vector of the decisions of the players
other than n so that we can write qι � (qιn,qι−n). The
model allows for a very generic formulation and
choice of these payoff functions, which adhere to the
following:

• Keeping the values qι−n of the operators other than
n fixed, the function πι

n(qιn,qι−n) is concave, nondecreasing
in qn; the monotonicity suggests that we can only in-
crease revenue by placing more vehicles at the same
station, whereas concavity suggests that the marginal
payoff (by placing one extra vehicle) decreases with the
number of vehicles placed in the station.

• For m≠ n, keeping fixed the values qι−m of the
operators other than m, the function πn

ι (qιm,qι−m) is non-
increasing in qm; this suggests that the revenue of an op-
erator can only decrease if competing operators place
more vehicles in that station.

We deliberately do not restrict πι
n(qι) further. This

allows us to formulate different types of customer
choice. For example, consider a station ι at which a
single customer is expected who strictly prefers opera-
tor 1 (but would take operator 2 if operator 1 is un-
available). This could be modeled by πι

1(1, 1) �
πι
1(1, 0) � πι

2(0, 1) > 0 and πι
2(1, 1) � 0. For another ex-

ample, consider a station ι at which a single customer
is expected who is indifferent between operators 1
and 2. This could be modeled by πι

1(1, 1) � πι
2(1, 1) �

0:5πι
1(1, 0) � 0:5πι

2(0, 1).
We further assume that there is a maximum num-

ber of vehicles that can be moved to a station profit-
ably; that is, qιn is upper-bounded by some constant q̂ιn
that represents the maximum demand at station ι. In
practice, operators usually employ some “filtering”
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upfront (Weikl and Bogenberger 2015), resulting in a
reasonably small number of vehicles that can be prof-
itably placed in a station.

In this section, we optimize for an operator n, con-
sidering that the other operators are “frozen” in their
strategies. Thus, the payoff values πι

n(qιn,qι−n) vary in
qιn only. We formulate the problem as an integer pro-
gram, and as such, “break” the nonlinearity of the
payoff functions πι

n into a linear objective function.
The simplest way to do so is to split a station ι into a
set Zι of locations labeled i � 1, : : : , q̂ιn. Each station ι
can be split into at most q̂ιn locations. We separate the
station-based payoff function into a sum of location-
based payoff values, assigning to the i th location the
marginal gain of placing the i th vehicle. These mar-
ginal gains can be computed by consecutive differ-
ences; that is, πi

n � πι
n(i,qι−n) −πι

n(i− 1,qι−n). From our
assumption of concavity, the marginal gains are non-
increasing, which results in an intrinsic ordering of lo-
cations; that is, without loss of generality, an operator
would choose to visit the i th location associated to a
station ι only after visiting all lower-indexed locations
1, : : : , i− 1.

Locations are represented as nodes in a rebalancing
graph. We denote the full set of nodes available to op-
erator n as Zn. The operator already has vehicles pre-
sent at some locations but not others; we refer to loca-
tions that do not have a vehicle as delivery locations
(Z−

n ) and to those with a vehicle present as pickup lo-
cations (Z+

n ). Thus, we can write Zn � Z+
n
⋃
Z−

n . Final-
ly, we also include a depot node, which is modeled as
both a pickup and delivery location.

In an analogy to Bruglieri, Pezzella, and Pisacane
(2017), we formulate the problem as a variant of a TSP
with profits in which not all locations need to be vis-
ited (similar to prize-collecting TSPs). This allows
the integration of two decisions: the decision on
which locations to service and the actual routing
decision. Additionally, one can specify subsets of
locations S−n ⊆ Z−

n ,S
+
n ⊆ Z+

n that must be visited. In
this way, we cater to mandatory customers (e.g., to
fulfill a contract) and also enforce that vehicles that
are parked illegally are picked up.

Importantly, we assume that nearby stations do not
influence each other. This is arguably a simplifying as-
sumption as users might walk to the next available ve-
hicle in a nearby station even if this increases the
walking distance and because vehicle returns depend
on the availability of vehicles at the origin. This as-
sumption is common in the literature on car-sharing
rebalancing (Bruglieri, Pezzella, and Pisacane (2018),
for example, randomly assign customers who belong
to the catchment area of multiple stations), consider-
ing that interdependent demand processes would
significantly increase the problem complexity and is
beyond the scope of this paper.

3.1.2. Arcs and Costs. For each pair of locations
i ∈ Z−

n , j ∈ Z+
n , we associate costs c〈ij〉, c〈ji〉 and travel

times τ〈ij〉,τ〈ji〉 between these locations. The costs serve
as an estimate for the costs of the amount of fuel as
well as the payment for the time it takes to move be-
tween the locations (either proportionate wages or
payments to a service provider). Note that the costs
and travel times are not necessarily symmetric and
are always equal for pairs of locations from the same
station (e.g., cij � ckl if i and k are locations for the
same station ι1 and j and l are locations for the same
station ι2). Operators drive from pickup to delivery lo-
cations, but the travel from a delivery to a pickup lo-
cation may be done in a lot of different ways, such as
using a foldable bike, walking, public transit, or using
a second car driven by a colleague (“double driving”).
We can then describe the problem in terms of its un-
derlying network or directed bipartite graph G, whose
nodes correspond to the locations Zn, and with arcs
An between each pickup location and each delivery
location in either direction.

3.1.3. Workers and Tours. Operator n employs Wn
workers who relocate vehicles by starting at a depot,
visiting pickup and delivery locations in alternating
order, and returning to the depot at the end of their
shift of at most T units of time. A worker can only re-
locate one vehicle at a time. As already mentioned, we
assume that there is a central depot at which workers
can collect and return equipment, cleaning supplies,
and lost items. Although assuming this rebalancing
mode poses a simplified model, we later show that
the game-theoretical formulation can be extended to
more complex cost models, such as rebalancing using
a truck (that can relocate multiple vehicles) or assis-
tance using a minibus (that can transport multi-
ple workers).

Our problem is, thus, specified by the bipartite
graph G (i.e., the set of locations Zn � Z+

n
⋃
Z−

n includ-
ing two copies of the depot dn ∈ Z−

n , pn ∈ Z+
n and the

set of arcs An); for each location i (associated to a sta-
tion ι), an expected revenue πi

n (corresponding to the
marginal gains of placing an i th vehicle in the corre-
sponding station); for each arc e, a travel cost ce and
travel time τe; sets of enforced visits S+n ⊆ Z+

n , S
−
n ⊆ Z−

n ;
a number of workers Wn; and a maximum shift time
T. We set up an integer programming formulation to
search for a profit-maximizing tour. The decision
variables are

• For each location i, ani denotes whether operator n
has a vehicle at location i after rebalancing; in other
words, ani � 1 iff either i is a pickup location at which n
chooses not to remove the vehicle or i is a delivery
location that n chooses to serve with a vehicle.

• For each arc e, xne denotes whether operator n
chooses arc e on one of the routes.
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• For each location i, ti denotes the point in time at
which location i is visited.

maxΠn �
∑

i∈Zn\ dn,pn{ }
πn
i a

n
i −

∑
e∈An

cexne , (1a)

s:t: ani �
∑
j∈Z+

n

xn〈ij〉 �
∑
j∈Z+

n

xn〈ji〉 ∀ i∈Z−
n\ dn{ }, (1b)

1 − ani �
∑
j∈Z−

n

xn〈ij〉 �
∑
j∈Z−

n

xn〈ji〉 ∀ i ∈Z+
n\ pn{ }, (1c)

∑
i∈Z+

n \ pn{ }
xn〈dni〉 ≤Wn, (1d)

∑
i∈Z−

n \ dn{ }
xn〈ipn〉 ≤Wn, (1e)

ti+xij τij+T
( )≤ tj+T ∀ 〈I, j〉 ∈An, (1f)∑
e∈A C( )

xne ≤ |C | −1 ∀C⊆Zn\ dn,pn
{ }

, (1g)

ani � 1 ∀ i∈ S−n , (1h)

ani � 0 ∀ i∈S+n , (1i)

xne ,a
n
i ∈ 0,1{ } ∀ e∈An, i∈Zn, (1j)

0≤ ti ≤T ∀ i∈Zn: (1k)

This model is an alternative notation of a multi-
vehicle profitable tour problem on a bipartite graph
and differs from the two-index notation of the VRP in
three key components: first, the operator maximizes
gross profit; second, visiting a location is not manda-
tory—instead, there are only incoming and outgoing
arcs if a location is visited; and third, the graph G is bi-
partite, which restricts the routing options and neces-
sitates a split depot. The model can also be interpreted
as a pickup and delivery problem or as a dial-a-ride
problem with unit capacity (see Parragh, Doerner,
and Hartl 2008 for reviews on these problem classes).
Equation (1a) maximizes the gross profit given by
payoffs minus costs (assuming fleet procurement costs
are sunk). Equations (1b) and (1c) are assignment con-
straints that link availability and visits of locations, en-
suring that each location has the same number of in-
coming and outgoing arcs (flow conservation) and at
most one of each. Equations (1d) and (1e) guarantee
that no more than Wn workers leave the depot and re-
turn there (either one would be sufficient and directly
imply the other). Constraints (1f) ensure that all work-
ers return to the depot within the shift length T. Con-
straints (1g) are used for subtour elimination; al-
though formally they are redundant because of
Constraints (1f), including these constraints helps im-
prove the runtime in practice. Equations (1h) and (1i)
specify that all locations in the sets S−n and S+n must be
visited; that is, a vehicle must either be left there or re-
moved from there.

3.2. Competitive Pickup and Delivery
Orienteering Problem

In the PDOP model, each operator implicitly assumes
that the number of vehicles at a station is known.
However, competitors also react to how many ve-
hicles this operator deploys at some station. With the
rise of mobility-as-a-service solutions, the number of
customers who are registered with multiple operators
grows, which increases the relevance of considering
competition in the optimization models.

We define competitive stations as those that can be
accessed by multiple players. For example, if shared
customers are expected at station ι and if, before relo-
cation, two or more operators have a vehicle there, it
can be beneficial for one of them to pick up the car
and service another station. In the C-PDOP, each op-
erator relocates the operator’s fleet with the goal of
maximizing the gross profit while considering that the
other operators are relocating their fleets and strate-
gizing accordingly. Thus, we consider Nash equilibria
as the desired solution concept; that is, we search for a
strategy profile by which no operator can benefit from
unilateral deviation. A strategy defines the number of
vehicles operator n has at a station ι after rebalancing,
that is, the vector qn. We refer to qn as a compact strat-
egy as it is sufficient to represent the entire solution.
In other words, the routing decisions follow directly
from the availability at the locations of player n by cal-
culating an optimal solution to (1a)–(1k).
The model in Equations (1a)–(1k) is further extended
by introducing the competitive profit functions Πn for
each player n. Let q � (q1, : : : ,qN) denote the joint pro-
file of (compact) strategies; q−n denotes the joint pro-
file of all players except n. From q−n and for a given
player n, the competitive profit is defined as the differ-
ence between station-separable payoff and costs,
Πn(q) � Rn(q) −Cn(q). The cost term can be written as
Cn(q) � Cn(qn) �

∑
e∈An

cexne , where xne is an optimal
(i.e., cost-minimizing) choice of routing decisions. No-
tice that the cost terms depend only on the strategy of
operator n; henceforth, we write Cn(qn) instead.

The competitive profit functions can be written as

Πn q( ) � Rn q( ) − Cn qn( ) �
∑
ι∈Dn

πι
n qι

−n
( ) − Cn qn( ): (2)

Given the definition of the strategies and the associat-
ed gross profits, a strategy profile q forms a Nash
equilibrium if and only if, for every player n,

Πn q( ) �max
q′
n

Πn q′
n,q−n

( )
; (3)

that is, the Nash equilibrium strategies maximize the
gross profit of the players given the other operators’
strategies as input. Thus, no player can profit from de-
viating unilaterally.
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We should state here that our model allows for dif-
ferent profit functions πι

n, and as a consequence, such
games may, in general, not have pure strategy Nash
equilibria (we provide an example in this section).
From a theoretical perspective, we can study condi-
tions under which pure strategy Nash equilibria are
guaranteed to exist.

3.2.1. Unit Demand Stations. By this we mean that at
most one customer is expected at station ι, and accord-
ingly, each operator places at most one vehicle there.
Under this assumption, our notation can be simplified
because the notions of stations and locations become
equivalent, and in particular, we have qιn � ain ∈ {0, 1},
where i is the unique location associated with station
ι. Also, under this assumption, we consider competi-
tive locations rather than competitive stations; we let
Z �⋃

nZn denote the set of all locations and ZC de-
note the set of competitive locations.

3.2.2. Indifferent Customer Choice. That is, customers
do not have a preference among different operators
and, thus, select vehicles at random and with equal
probability. In particular, under this assumption, all
customers are indifferent between all operators to
which they are subscribed (although different custom-
ers may still have different subscriptions). This as-
sumption is realistic if customers with multiple mem-
berships choose the closest vehicle regardless of the
operator. Note that, if we assume both unit demand
stations as well as indifferent customer choice, the
payoff function πi

n(qi) can be described rather suc-
cinctly: if π̄i

n � πi
n(1, 0−n) is the payoff that player n

could extract by being the only operator at location i
and m �| {n′ ≠ n : qin′ � 1} | is the number of operators
at location i (excluding n), then

πi
n si( ) � π̄i

n

m+ 1
:

In such a situation, we can efficiently specify the pay-
off functions with a single parameter π̄i

n for each (lo-
cation, operator) pair.

3.2.3. Player Homogeneous Payoffs. We assume that
πι
n � πι does not depend on n, for all stations ι, if n of-

fers service at location ι. This assumption is justified
by evidence that margins are driven by very similar
revenues (see Balac et al. 2019). When combined with
the first two assumptions, this further restricts the di-
mensionality of the problem: we only need to specify,
for each location i, a value πi for the payoff that any
player could extract by being the sole operator at i.

Most of our theoretical results are proven under the
combination of all three assumptions. From now on,
we use the terminology restricted C-PDOP model
whenever we refer to an instance satisfying all three

assumptions (unit demand stations, indifferent cus-
tomer choice, and player homogeneous payoffs). The
restricted C-PDOP model has theoretical advantages:
it allows for a congestion game formulation (see Lem-
ma 1); thus, we can guarantee the existence of at least
one pure strategy Nash equilibrium and that such
equilibria can be reached via best-response dynamics
(see Corollary 1). If these assumptions do not hold,
cases without pure strategy Nash equilibria can exist,
meaning that stability is not guaranteed. In Section 5,
we indeed experiment with the generality of the mod-
el because the preceding assumptions can be very re-
strictive for some car-sharing systems.

3.3. Examples of Games Without Nash Equilibria
Dropping either of the three assumptions (even while
keeping the other two), we can construct games with-
out a pure strategy Nash equilibrium.

3.3.1. Multidemand Stations. In the example of Figure 1,
we assume indifferent customer choice and player ho-
mogeneous payoffs but allow for multidemand sta-
tions. If a total of q vehicles are placed at a station ι,
then a total revenue of πι(q) is extracted from this sta-
tion. The revenue is split in proportion to the amount of
vehicles by each player; thus, if players 1 and 2 place q1
and q2 vehicles, respectively (so that q � q1 + q2), then
they receive payoffs of q1

q π
ι(q) and q2

q π
ι(q), respectively.

Player 1 routes on the left half of the graph and has es-
sentially two undominated strategies: put two vehicles
in each of the stations A and B or put two vehicles in
each of the stations C and D. Similarly, player 2 routes
on the right half of the graph and has essentially two
undominated strategies: put a vehicle in each of the sta-
tions A and C, or put a vehicle in each of the stations B
and D. For simplicity, we assume that the routing costs
of each of these strategies is normalized to zero, so we
only need to worry about the way payoffs are split.

Finally, we choose the station payoffs as in Figure 1.
For illustration purposes, let us compute the gross
profits if player 1 takes the “AABB” tour and player 2
takes the “AC” tour. In this situation, player 1 extracts
two thirds of the revenue from station A and full reve-
nue from station B, and player 2 extracts one third of
the revenue from station A and full revenue from sta-
tion C. We, thus, have

Π1 � 2
3
πA 3( ) + πB 2( ) � 14

3
+ 7 � 35

3
;

Π2 � 1
3
πB 3( ) + πC 1( ) � 7

3
+ 4 � 19

3
:

Note that player 2 would rather deviate to the “DB” tour
and increase gross profit. By doing these calculations for
all possible pairs of strategies, we see that no Nash equilib-
rium exists; in particular, any sequence of iterated best
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responses gets stuck in the loop (AABB,AC) → (AABB,
DB) → (DDCC,DB) → (DDCC,AC) → (AABB,AC).

3.3.2. Differentiated Customer Choices. In the exam-
ple of Figure 2, we assume unit demand stations and
player homogeneous payoffs but allow for differenti-
ated customer choice. Our example is built with two
players. Each station ι has an associated unit revenue
πι � 1 that can be extracted. If both operators serve
this station, the revenue is split unequally among the
operators. In stations A and C, the revenue is split
75− 25 in favor of player 1, but in stations B and D the
revenue is split 75− 25 in favor of player 2. Thus, if,
for example, both players service station A, then they
receive payoffs of 3=4 and 1=4, respectively. Player 1
routes on the left half of the graph and has essentially
two undominated strategies: service stations A and B
or service stations C and D. Similarly, player 2 routes
on the right half of the graph and has essentially two
undominated strategies: service stations A and C or
service stations B and D. For simplicity, we assume
that the routing costs of each of these strategies is nor-
malized to zero, so we only need to worry about the
way payoffs are split.

For illustration purposes, let us compute the gross
profits if player 1 takes the “AB” tour and player 2
takes the “AC” tour. In this situation, player 1 extracts
75% of the revenue from station A and full revenue
from station B, and player 2 extracts 25% of the reve-
nue from station A and full revenue from station C.
We, thus, have

Π1 � 3
4
+ 1 � 7

4
;

Π2 � 1
4
+ 1 � 5

4
:

Note that player 2 would rather deviate to the “DB” tour
and increase gross profit. By doing these calculations for
all possible pairs of strategies, we see that no Nash equi-
librium exists; in particular, any sequence of iterated
best responses gets stuck in the loop (AB,
AC) → (AB,DB) → (DC,DB) → (DC,AC) → (AB,AC).

3.3.3. Player Heterogenous Payoffs. In the example of
Figure 3, we assume unit demand stations and indif-
ferent customer choice but not player homogeneous
payoffs. There are two players and five competitive
delivery stations; each of the two players has five

Figure 1. Example of a C-PDOP Instance with No Pure Nash Equilibria

Notes. There are four delivery districts, labeled A, B, C, D. Each player has a depot (d1 or d2) and vehicles at distinct pickup locations (+1 and +2,
respectively) with zero payoff. Player 1 can put at most two vehicles in a district and has essentially three strategies (null, AABB tour, and DDCC
tour). Player 2 can put at most two vehicles in a district and has essentially three strategies (null, AC tour, and DB tour). The concave payoffs are
player homogeneous and follow indifferent customer choice. For a specific choice of location payoffs (center) and payoff matrix (right), no Nash
equilibrium exists.

Figure 2. Example of a C-PDOP Instance with No Pure Nash Equilibria

Notes. There are four delivery unit capacity districts, labeled A, B, C, D. Each player has a depot (d1 or d2) and vehicles at distinct pickup locations
(+1 and +2, respectively) with zero payoff. Player 1 has essentially three strategies (null, AB tour, and DC tour). Player 2 has essentially three
strategies (null, AC tour, and DB tour). The payoffs are player homogeneous with differentiated customer choice (center). Looking at the payoff
matrix (right), we can see that noNash equilibrium exists.
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vehicles at pickup stations. All arcs that appear in the
network have equal travel cost of two. The arcs that
do not appear in the network have a travel cost given
by the induced directed graph metric (so, for example,
the distance from d1 to location 3 equals 12 because
there is a six-arc path from d1 to location 3 in the origi-
nal graph). Thus, the problem instance even satisfies
the triangular inequality. Note that player 1 routes
on the left half of the graph and has essentially three
strategies: do nothing, service locations (1,2,3), or
service locations (1,4,5). Similarly, player 2 routes on
the right half of the graph and has essentially three
strategies: do nothing, service locations (5,4,3), or
service locations (5,2,1). By our choice of arc costs,
each of the nontrivial strategies has a travel cost
of 14.

Finally, we choose the station payoffs as in Figure 3.
Because we assume indifferent customer choice, this
means that the payoff from a player at a station is
halved if the other player also places a vehicle there.
For illustration purposes, let us compute the gross
profit if player 1 takes the “short” tour, servicing
(1,2,3), and player 2 takes the “long” tour, servicing
(5,2,1). In this situation, player 1 extracts full revenue
from station 3,; player 2 extracts full revenue from sta-
tion 5, and both players extract half revenue from sta-
tions 1 and 2 each. We, thus, have

Π1 � 13
2
+ 2
2
+ 9 − 14 � 1

2
;

Π2 � 9
2
+ 5
2
+ 11 − 14 � 4:

Note that player 2 would rather deviate to the short
tour and increase gross profit. By doing these calcula-
tions for all possible pairs of strategies, we see that no
Nash equilibrium exists; in particular, any sequence of
iterated best responses gets stuck in the loop
(S,S) → (L,S) → (L,L) → (S,L) → (S,S).

The counterexamples presented here are hand-
crafted to show that pure strategy Nash equilibria
may not exist. For these examples, the structure of
competitive locations and tours exhibits many

symmetries, and revenues vary vastly between the op-
erators and different locations. We could argue that
this situation is in some sense “atypical” and would
not arise in “realistic” networks. From a practical per-
spective, we observe in Sections 5.5–5.7 that pure
strategy Nash equilibria can be found in most
instances.

3.4. Properties of the Competitive Pickup and
Delivery Orienteering Problem

We first observe the computational hardness of solv-
ing the PDOP (and, thus, calculating optimal routes of
the C-PDOP).

Theorem 1 (NP-Hardness). The following problems are
all NP-hard even for the special case of two players.

1. Given a PDOP instance, compute a tour that maxi-
mizes the gross profit.

2. Given a C-PDOP instance, a (compact) joint strategy
q, and a player n, computeΠn(q).

3.Given a C-PDOP instance, a player n, and a joint strat-
egy q−n of the remaining players, compute an optimal re-
sponse for player n, that is, a strategy qn maximizing
Πn(qn,q−n).

4.Given a C-PDOP instance and a joint strategy q, deter-
mine whether q is a Nash equilibrium.

In the following, we focus on Nash equilibria; that is,
we want to establish whether they exist and if they can
be reached via “simple” dynamics. Because the restrict-
ed C-PDOP is a congestion game (Lemma 1), the exis-
tence of pure strategyNash equilibria can be guaranteed.
Congestion games are formally described by a set of
players (in our model, the different operators) and a set
of resources (in our restricted model, a resource for
each location and a resource for each cost-minimizing
tour). Each resource has an associated payoff function
that depends only on the number of players accessing it
(in our restricted model, the payoff achieved at a given
location decreases with the number of players servicing
it). Finally, each player has a set of feasible strategies or
subsets of resources (in our model, this corresponds to
the set of feasible tours), and the payoff incurred by a

Figure 3. Example of a C-PDOP Instance with No Pure Nash Equilibria

Notes. There are five delivery locations, labeled 1–5, which are all competitive. Each player has a depot (d1 or d2) and five vehicles at distinct pick-
up locations (+1 and +2, respectively) with zero payoff. Each player has essentially three strategies (null, short tour, and long tour). For a specific
choice of location payoffs (center) and payoff matrix (right), no Nash equilibrium exists.

Martin et al.: Competititive Pickup and Delivery Orienteering Problem
Transportation Science, Articles in Advance, pp. 1–28, © 2021 INFORMS 9



player at a joint strategy is just the sum of the payoffs of
the strategies the player is using.

Lemma 1 (Congestion Game). Any restricted C-PDOP
instance can be transformed into a congestion game. This
transformation induces a one-to-one correspondence be-
tween (compact) strategies in the C-PDOP instance and
strategies in the congestion game that preserve improving
deviations and, hence, the structure of Nash equilibria.

Because of the generality of the definition of the
congestion game and the proof (see Appendix A), this
construction of the congestion game is valid for many
different routing problems as long as the cost term
Cn(qn) depends only on the strategy of operator n. In
particular, our construction can be adapted to inte-
grate maintenance and refueling or recharging opera-
tions or to address other rebalancing modes, such as
using a truck or minibus. From this congestion game
formulation, the existence of pure strategy Nash equi-
libria follows directly (because of Rosenthal 1973,
Monderer and Shapley 1996).

Corollary 1 (Existence of Pure Strategy Nash Equilibria).
Any restricted C-PDOP instance has at least one pure strate-
gy Nash equilibrium. Moreover, for any starting strategy
q(0), any sequence q(0) → q(1) → : : : obtained by improv-
ing deviations (i.e., in which q(i+1) is obtained from q(i) by
an improving deviation of any one player) must eventually
terminate at a Nash equilibrium.

We can prove not only the existence of pure strate-
gy Nash equilibria, but also the convergence of best-
response dynamics to Nash equilibria. We leverage
this property in the iterated best response algorithm
in Section 4. The Nash equilibrium is not necessarily
unique; examples are discussed in Section 5.

3.5. Models for Comparison
To measure the impact of considering competition in
the servicing and routing decision, we compare the
optimal gross profit of the C-PDOP instance to prob-
lem variations in which (i) competitors collaborate to
maximize the overall gross profit but still only serve
their own customers (W-PDOP), (ii) operators merge
(M-PDOP) or cooperate in their fleet relocation opera-
tions (e.g., by outsourcing to the same third-party pro-
vider; Coop-PDOP), or (iii) competitors ignore each
other (quasi-monopolistic PDOP, optimistic: QMO,
pessimistic: QMP).

3.5.1. Welfare-Maximizing PDOP. We can measure the
losses in gross profit resulting from competition by
comparing the results of the C-PDOP to the system
optimum, that is, the welfare-maximizing strategy. In-
tuitively, this corresponds to a situation in which the
operators relocate their fleets by themselves, but only
the operator who benefits most from a competitive

location serves it. We merge all constraints of Model
(1a)–(1k) and add up the objective functions of each
player:

maxΠ q( ) �
∑
n

Πn q( ): (4)

Regarding the gross profits, we observe the following:

Corollary 2 (Monotonicity of Profits (Welfare-Maximizing
Solution)). The optimal gross profit of the welfare-
maximizing solution is never less than the joint gross profit
of the competitive solution.

The welfare-maximizing gross profit can, there-
fore—similar to the costs in the shared customer col-
laboration vehicle routing problem (Fernández,
Roca-Riu, and Speranza 2018)—serve as an upper
bound for the gross profit attainable in a Nash
equilibrium.

For the restricted C-PDOP model, we can analytical-
ly quantify the loss of efficiency, interpreted in terms
of the price of anarchy (Koutsoupias and Papadimi-
triou 1999, Roughgarden and Tardos 2002) and price
of stability (Schulz and Stier Moses 2003, Anshelevich
et al. 2008), which is defined as the worst-case bound
on the ratio between the worst (respectively, best)
joint gross profit of a pure strategy Nash equilibrium
and the joint gross profit of a welfare-maximizing
solution.

Lemma 2 (Price of Anarchy and Price of Stability). The
price of anarchy and price of stability of the C-PDOP can
be arbitrarily large. For the restricted C-PDOP model with
two players, we have the following results.

1. If (q1,q2) is a pure strategy Nash equilibrium and
(q′

1,q
′
2) is any strategy, then Π(q′

1,q
′
2) ≤Π(q1,q2)+

1
2
∑

i∈ZCπi.
2. The absolute difference in welfare between any two

Nash equilibria is at most 12
∑

i∈ZCπi.
3. The absolute difference in welfare between any Nash

equilibrium and any welfare-maximizing strategy is at most
1
2
∑

i∈ZCπi.
Moreover, all bounds in points 1–3 are tight, and if

πi � π ∀i ∈ ZC, then all bounds in points 1–3 can be re-
placed by 1

2π |ZC |.
The proof of points 1–3 in the lemma relies on a

simple expression for the player gross profits in the re-
stricted C-PDOP model; as such, it cannot trivially be
extended to the more general case.

3.5.2. Monopoly PDOP and Coopetition PDOP. In the
PDOP master model, we assume that only one opera-
tor is present, whereas in the competitive C-PDOP
model, each operator relocates the operator’s fleet sep-
arately while taking into account the strategy of the
other operators. We now consider two alternative
business models: the M-PDOP in which the

Martin et al.: Competititive Pickup and Delivery Orienteering Problem
10 Transportation Science, Articles in Advance, pp. 1–28, © 2021 INFORMS



competitors merge their fleets with the objective of re-
ducing travel costs and gross profit losses because of
competition and the Coop-PDOP in which the com-
petitors combine their relocation efforts. In order to
avoid the combinatorial explosion associated with all
possible merge combinations between operators, in
this section, we focus exclusively on the C-PDOP
model with unit demand stations, indifferent custom-
er choice (but not necessarily homogeneous payoffs),
and two operators that consider merging or
cooperating.

In the M-PDOP model, vehicles become indistin-
guishable. To construct an M-PDOP instance from a
C-PDOP instance, we merge all locations for all
operators in a station ι and devise a joint payoff func-
tion πι under the assumption that every customer
returns the highest payoff over all operators (πι(q) �
maxq′

∑
nπ

ι
n(q′) |∑nq

ι
n �

∑
nq

ι′
n )

( )
. In the case of unit

demand stations, servicing a location i contributes a
payoff of πi �max(π1

i ,π
2
i ) in a monopoly. In general,

the monopolist can keep both depots. In the numerical
experiment, however, we assume that the depots are at
the same geographical location and can, therefore, be
merged.

In the Coop-PDOP, operators can collaboratively re-
locate their fleets (entering coopetition). This may be
considered an alternative model when merging the
fleets is not an option (because of strategic considera-
tions or cartel law). One of the companies or a third
party relocates the vehicles of both fleets, thereby
maximizing the sum over both profit functions (with
the assumption that a cost or profit-sharing mecha-
nism is implemented at a later stage). The two key dif-
ferences between this and the monopoly solution are
that the payoff achieved in a competitive station de-
pends on which operator(s) serve it, and noncompeti-
tive delivery locations can only be reached from
pickup locations of the same player (so, for example,
one cannot generate revenue by moving a vehicle of
player 1 to a location where only a customer of player
2 is expected). Similarly to the M-PDOP, we model
the Coop-PDOP by devising a joint payoff function πι,
which returns the sum of payoffs achievable in this
station given the number of vehicles each operator
places there (πι(q) � ∑

nπ
ι
n(q)). We also exclude arcs

that connect a pickup location of one player with a de-
livery location of another player.

Note that it is possible (in both Coop-PDOP and
M-PDOP models) that a vehicle of operator 1 is
moved to some competitive station ι, and at the same
time, a vehicle of operator 2 is removed from there.
This can occur because of both inhomogeneous pay-
offs (the location is more attractive to player 1 than

player 2) and a highly profitable station of player 2
elsewhere.

In practice, the number of workers in the monopoly,
WM, or in coopetition, WO, often equals the number of
workers under competition, but we do not restrict the
model as such. As the M-PDOP and Coop-PDOP con-
tain the PDOP as special cases, we immediately have
the following results concerning their computational
hardness.

Corollary 3 (NP-Hardness of M-PDOP and Coop-
PDOP). The following problems are NP-hard.

1.Given anM-PDOP instance, compute a tour that maxi-
mizes gross profit.

2. Given a Coop-PDOP instance, compute a tour that
maximizes gross profit.

Intuitively, one would assume that the gross profits
of monopoly and coopetition solutions consistently
exceed the gross profit of Nash solutions. Although
this is not always true (for example, if the players
serve distant operating areas with disjoint depots), we
provide some assumptions that guarantee the validity
of this intuition.

Lemma 3 (Monotonicity of Profits (Monopoly or Coopeti-
tion Solution)). The following are true for the C-PDOP
model and its monopoly and coopetition variants.

1. The optimal gross profit of a monopoly solution is not
less than the optimal gross profit of the coopetition solution.

2. If the number of workers is at least the sum of people
working for the first and second operator (WM,WO ≥
W1 +W2), the optimal gross profit of the monopoly or coope-
tition solution is not less than the optimal gross profit attain-
able in any pair of strategies (which includes all pure strategy
Nash equilibria as well as the welfare-maximizing solution).

Thus, in realistic settings, competing is inferior to
cooperation with respect to (short-term operational)
gross profits.

3.5.3. Quasi-Monopolistic PDOP. We identify two
slightly different strategies that model that either com-
petition or the rationality of the competitor is ignored:
First, we solve the PDOP assuming that the other op-
erators have no vehicles available in any station and
do not rebalance to these locations either (optimize
against qn � 〈0, : : : , 0〉 for each competitor n). We call
this model the QMO. Second, we solve the PDOP as-
suming that the other operator has vehicles available
at all locations after rebalancing (optimize against
qn � 〈q̂1n, : : : , q̂ |Dn |

n 〉 for each competitor n, where q̂ιn de-
notes the maximum number of vehicles that operator
n can move to station ι ∈Dn). This model is called the
QMP. Although both QMO and QMP seem to be
good candidates for serving as lower bounds on the
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gross profit of either player as well as on the total
gross profit, it is possible to generate instances in
which these problems result in higher payoffs.

4. Algorithms for the Nash Equilibrium
Calculation

The most basic approach for finding pure strategy
Nash equilibria is full enumeration (FE): iterate
through all strategy profiles, that is, combinations of
strategies of all operators, and test if no player has in-
centive to unilaterally deviate. If this is true, the strate-
gy profile constitutes a Nash equilibrium. Although
this approach obviously finds the best pure strategy
Nash equilibrium (with respect to social welfare or
any other metric) whenever an equilibrium exists, it
takes exponentially long in the number of competitive
locations. We, therefore, consider alternative ap-
proaches: IBR and PFO. The two algorithms represent
two approaches for finding a Nash equilibrium in con-
gestion games: utilizing the improvement dynamics
of alternately improving players to find a local opti-
mum of the potential (IBR) or (centrally) finding the
global optimum of the potential (PFO). Both algo-
rithms find a Nash equilibrium in congestion games,
but they do not necessarily find a welfare-maximizing
Nash equilibrium. If the congestion game property is
violated, the potential is undefined, but IBR might still
be able to find pure strategy Nash equilibria if they
exist.

4.1. Iterated Best Response Algorithm
Using the IBR, we locally search for a pure strategy
Nash equilibrium. We first calculate the optimal strat-
egy for one of the players (say, player 1) against a pre-
defined strategy for the competitors, for example, as-
suming the competitors play the empty strategy
qn � 〈0, : : : , 0〉 (and, hence, do not have any vehicles at
any competitive location). We then use the strategy of
player 1 as input for calculating the optimal strategy
of player 2, then player 3. We continue with our calcu-
lations of best responses until the strategies no longer
change. Although the best response iterations cannot
be implemented in the field, we assume that operators
would calculate the Nash equilibrium theoretically
and implement their equilibrium strategy.

Even if the IBR terminates, it may not necessarily re-
turn the best Nash equilibrium for one of the players
or a welfare-maximizing Nash equilibrium. Yet, be-
cause of Lemma 2, we know that any two Nash
equilibria do not differ by more than 1

2
∑

i∈ZCπi for the
restricted C-PDOP model with two players. Thus, im-
plementing the IBR does not result in arbitrarily bad
Nash solutions in such cases. Though operators do
not necessarily find the “best” Nash equilibrium, we

guarantee that, for two operators, the Nash equilibri-
um found using IBR is at least as good (for either play-
er) than the optimistic quasi-monopolistic strategy.

Theorem 2 (Monotonicity of Profits (IBR vs. QMO)). For
the restricted C-PDOP model with two players, the gross
profit of each player at the Nash equilibrium reached by
IBR, starting from the 〈0, : : : , 0〉 strategy, is at least as high
as the gross profit with the optimistic quasi-monopolistic
strategy.

Thus, operators who currently calculate their routes
using the optimistic quasi-monopolistic strategy can
only benefit from calculating the Nash equilibrium.
Conversely, however, we can generate instances in
which the pessimistic quasi-monopolistic strategy
beats the IBR solution.

Because the restricted C-PDOP is a congestion
game, IBR terminates in a finite number of iterations.
If one aims at implementing the IBR in practice, the
number of iterations required to reach an equilibrium
is critical. General congestion games with an arbitrary
number of players belong to the class of polynomial
local search–hard games. Thus, even if there exists a
polynomial time algorithm for finding pure strategy
Nash equilibria, the solution cannot, in general, be
found in polynomial time by myopic players (Fabri-
kant, Papadimitriou, and Talwar 2004; Ackermann,
Röglin, and Vöcking 2008). The C-PDOP, however,
differs from general congestion games: the number of
players is low. By presenting an upper bound on the
number of iterations, we show that, assuming homo-
geneous payoffs, unit demand stations, and indiffer-
ent customer choice, the IBR for the C-PDOP does not
require full enumeration of all strategies.

Theorem 3 (Termination of the Iterated Best Response
Algorithm). For the two-player restricted C-PDOP model,
the IBR terminates after one player plays at most half of the
player’s strategies (thus, the maximum number of required
recalculations is |S| +2 instead of the |S|2 we have in the FE
algorithm).

However, the upper bound on the runtime remains
substantial as the number of strategies is exponential
in the number of competitive stations, and obviously,
no bound can be given in the general model because
pure strategy Nash equilibria might not exist.

These results all require exact responses, that is,
finding an optimal solution to the PDOP rather than a
near-optimal feasible solution. However, some results
also still hold when we relax the notion of optimality.

Theorem 4 (Iterated Best Response Algorithm for
Approximate Nash Equilibria). Let sn � (an,xn) denote a
full strategy of player n, that is, describing the servicing
and routing decisions for all arcs and locations. For any
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ε > 0, consider the following version of ε-approximate iter-
ated best response (ε-IBR): given a player n and a full strat-
egy s−n of the other players, player n can compute a full
strategy sn with the property that

1+ ε( )Πn sn, s−n( ) ≥max
s′n

Πn s′n,s−n
( )

;

note that this amounts to finding an approximate solution
of the PDOP problem in Equations (1a)–(1k). Player n can
then choose to deviate to sn if this improves gross profit.

For the restricted C-PDOP model, ε-IBR always ter-
minates after a finite number of iterations, and the fi-
nal joint strategy s is an ε-Nash equilibrium in the
sense that, for any player n,

1+ ε( )Πn sn,s−n( ) ≥max
s′n

Πn s′n,s−n
( )

:

Though no polynomial-time approximation of the
PDOP is known, we can use this result to get a poste-
riori bounds on the quality of approximate equilibria.
For example, if a commercial solver that implements
branch-and-cut procedures obtains a solution with a
provable optimality gap of (1+ ε), this immediately
implies an (1+ ε) guarantee on the quality of the
equilibrium.

4.2. Potential Function Optimizer
Another approach toward finding a Nash equilibrium
in congestion games is optimizing the potential func-
tion that can be optimized using a standard solver.
This is a global function that captures the local incen-
tives for players to change their strategies and, there-
fore, a useful tool for analyzing equilibria. In particu-
lar, if a game admits a potential function, the Nash
equilibria of the game coincide with the local optima
of the potential function.

Because, in the general C-PDOP model, Nash equi-
libria are not guaranteed to exist, a potential function
cannot be defined. However, for the restricted
C-PDOP, it is possible to define the potential Φ as the
sum

Φ q( ) �
∑
i∈Z

Hyiπ
i −∑

n
Cn qn( ), (5)

where yi is the number of operators servicing location
i, πi is the revenue that can be extracted from location
i, and Hk � 1+ 1=2+⋯ +1=k is the k th harmonic num-
ber. Notice that the potential is not the same as the
social welfare (4): the potential function associates a
payoff of Hyiπ

i with competitive locations where yi

players are available, and the social welfare more real-
istically assumes that only one of them is able to ser-
vice the customer. Intuitively, this means that the PFO
tends to select equilibria in which multiple operators
have a vehicle available at competitive locations.

Although a global optimum of the potential func-
tion is always a pure strategy Nash equilibrium, it is
not necessarily a welfare-maximizing one. However,
we can characterize instances in which both coincide.

Lemma 4 (Optimality of the Potential Function Optimi-
zer). For the restricted C-PDOP model (which has a well-
defined potential function Φ),

1. Any potential function maximizermaxsΦ(q) is a Nash
equilibrium.

2. If the PFO returns a Nash equilibrium in which at most
one operator has a vehicle available at any competitive loca-
tion

(∑
nq

i
n ≤ 1 ∀i ∈ ZC), this Nash equilibrium is welfare-

maximizing.

Thus, the PFO is likely to return the welfare-
maximizing Nash equilibrium if revenues are low,
costs are high, and margins are tight as Nash equilib-
ria mostly do not to contain locations where both op-
erators are present.

5. Computational Study
In the following, we quantify the average-case gross
profit gains and losses, not only for the restricted
C-PDOP, but also for the generality of the model. Un-
less stated otherwise, we focus on player homogeneous
payoffs, unit demand stations, indifferent customer
choice, and two operators. Further, we conduct a sensi-
tivity analysis if the number of operators increases, if
payoffs are not player homogeneous, if stations are
multidemand with decreasing marginal returns, and if
customers are not strictly indifferent between operators.
To quantify gains and losses, we present a case study
featuring the competition between two major carshar-
ing operators in Munich, Germany.

5.1. Experimental Design
We conduct our experiments on a Windows 10 com-
puter restricted to a single 2.60 GHz core of an Intel
Xeon E7-4860 CPU with 4 GB of RAM. We implement
both algorithms in Java 10, using CPLEX 12.8 for solv-
ing the PDOPs. We start IBR against two different
strategies: assuming that the competitors are absent
(IBR-0) or starting against the welfare-maximizing
strategy (IBR-WP).

To study the effects of competition and the various
business models, we randomly generate 100 data sets
for different combinations of the parameters mentioned
in Table 1. When studying multiplayer settings, inho-
mogeneous payoffs, multidemand stations with mar-
ginal returns, and various different customer choice
models, some of the parameters have to be defined
slightly differently. These changes are introduced at a
later stage. The parameter levels are motivated by the
Munich car-sharing market. For each instance, we
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randomly sample locations on a square with an edge
length of 15 km and use Euclidean symmetric costs
with a weight of 0.62 (25 km/h traffic speed, 12,5e/
h worker wages (Wittenbrink 2014), 0.12e/km for fuel).

Substitution refers to the share of competitive loca-
tions, that is, if all delivery locations are shared (F) or if
shared locations are randomly sampled (P). Albiński and
Minner (2019) report that approximately 25% of all cus-
tomers in Munich have multiple memberships; in the P
level, we set 25% of all delivery locations as shared.

To quantify the impact of changes in the payoff/cost
structure, we vary the payoff. In the high-margin sce-
nario, we set the margin of all delivery and competitive
pickup locations to π � 8 (1 otherwise), and in the low-
margin scenario, we set the margin to π � 4 (0.5 other-
wise). The payoffs that can be collected at delivery loca-
tions if no vehicle is available constitute the baseline
profit toward which all relative improvements are mea-
sured. Pickup locations are associated with a small (but
positive) payoff because of a low (but nonzero) proba-
bility that a customer rents a car from these locations.

The customer density refers to the number of loca-
tions that enter the model (possibly contingent to prior
filtering). We generate instances with a high density
(|V+

n |�|V−
n |� 12) and instances with a low density

(|V+
n |�|V−

n |� 8). The customer density can vary between
the operators. In all instances, we use one worker. Fur-
ther, we assume that all locations are optional, that is,
S1n � S0n � ∅.

5.2. Profit Increase Because of Considering the
Presence of Competition

Table 2 lists relative gross profits (toward the baseline,
that is, no rebalancing) for operators 1 and 2 for all

parameter combinations if margins of both operators
coincide, that is, are either high or low for both opera-
tors. More extensive results can be found in Appendix
B in Table B.1. There, instances are addressed by four
consecutive letters referring to substitution, margin
(same for both operators), and the density of the first
and second operator. For example, F_H_L_L refers to
full substitution, high margins, and low densities for
either operator. In particular, this allows us to study if
the larger or smaller operator benefits more.

Averaging over all full competition instances, opera-
tors are even better off not to rebalance at all than to ig-
nore the competitor (QMO). QMO even generates
losses in five (operator 1)/five (operator 2) of eight in-
stances with full competition, and all other approaches
result in nonnegative gross profit gains (in all instances
in which the other does not have lower margins). Thus,
it makes sense to incorporate competition in the routing
and servicing decision. However, Nash solutions out-
perform both quasi-monopolistic solutions. As to be ex-
pected, the improvement over QMO/QMP increases in
the level of competition because more locations are
shared. The maximum attainable gross profit gain is
251% under partial competition and if the second oper-
ator is larger than the first mover (versus no rebalancing
operations). These very high relative values stem from
the fact that the baseline and all absolute values are
rather low and that (in particular, under full competi-
tion) quasi-monopolistic solutions often involve losses.

As is visible from Table 3, the player with more com-
petitive locations can generate higher gross profit gains
when operators have different numbers of vehicles to re-
locate. This is because the larger operator has more non-
shared locations (and can, thus, build a more efficient
route). This effect partially alleviates the disadvantage of
the second mover. The smaller operator, however, has
the larger benefit of considering competition. This is be-
cause the larger operator serves most competitive loca-
tions, and the small operator benefits from moving ve-
hicles to the few remaining locations. It also becomes
apparent that, even though gross profits compared with
the baseline increase if the network becomes more
dense, the relative benefit of considering

Table 1. Parameters for the Experimental Design in the
Base Case

Parameter Level 1 Level 2

Substitution F Full Substitution P Partial Substitution (25%)
Margin H π � 8 L π � 4
Density H | V+

n |� 12 L | V+
n |� 8

Table 2. Average, Minimum, and Maximum Percentage Profit Increase Toward Baseline (No Rebalancing) Under Various
Models and Algorithms as Well as Different Experimental Settings for Either Operator (Operator 1 in Left Block, Operator
2 in Right Block)

Operator 1 Operator 2

Setting IBR-0 IBR-WP PFO QMO QMP IBR-0 IBR-WP PFO QMO QMP

Average (full competition) 83.6 72.4 71.2 −2.77 40.0 52.2 67.9 69.8 −2.11 39.7
Minimum (full competition) 5.51 4.88 4.88 −63.2 1.04 3.66 3.93 4.62 −61.7 1.15
Maximum (full competition) 225 204 206 85.9 180 191 207 215 103 199
Average (partial competition) 111 110 109 88.3 101 109 111 113 92.2 104
Minimum (partial competition) 6.74 6.74 6.46 3.45 4.89 8.28 8.28 8.92 4.49 5.54
Maximum (partial competition) 243 243 240 210 231 246 246 251 226 243

Martin et al.: Competititive Pickup and Delivery Orienteering Problem
14 Transportation Science, Articles in Advance, pp. 1–28, © 2021 INFORMS



competition decreases as QMO becomes more profit-
able. Averaging over all settings with two large op-
erators, gross profit gains over the baseline increase
from 79.9% (QMP) to 103% (IBR-WP/PFO) for oper-
ator 2 (28.9% increase), and for two small operators,
the gross profit gain increases from 51.1% to 73.9%
(44.6% increase). These high relative values are due
to low absolute values, for example, the gross profit
gain for operator 1 increases from 0.26 (QMP) to 0.43
(IBR-0) over the baseline in the setting with low den-
sity and low margins for both operators. In absolute
numbers, however, the benefit of considering com-
petition continues to increase.

We observe that IBR-0 privileges operator 1 over op-
erator 2, and the other algorithms (IBR-WP, PFO, QMO,
QMP) do not give a clear advantage to either player.
This makes IBR-0 the best algorithm for player 1. For
the second player, IBR-0 is outperformed by IBR-WP
and PFO in almost all instances. IBR-WP tends to re-
turn higher gross profits than PFO for player 2 if
both operators have the same size, and PFO tends to
return higher gross profits if one player is larger
than the other. A similar pattern can be observed
with respect to welfare (sum over gross profits of
both players). In most instances, QMO returns lower
gross profits than QMP, but exceptions exist if the
gross profit is low.

5.3. Profit Loss Because of the Presence of
Competition

Table 4 lists the gross profits of the best found Nash
equilibrium (profit-maximizing among IBR-0, IBR-WP,
and PFO) compared with the welfare-maximizing solu-
tion, the coopetition solution, and the monopoly

solution. Extended results can be found in Table B.2.
There, the substitution level is addressed in the col-
umn header, and every row refers to margin (same
for both operators), density of operator 1, and densi-
ty of operator 2.

In general, obviously, all instances follow similar
tendencies: gross profits increase in the number of ve-
hicles that are rebalanced (either because of an in-
creasing customer demand or increasing demand im-
balance) and with increasing margins but decrease if
competition increases. Although joint fleet manage-
ment (monopoly or coopetition) results in a substan-
tial gross profit increase, the benefit of welfare-
maximization is little (consistently less than 2% under
partial competition) and does not justify the addition-
al coordination requirement. We observe a tendency
that the percentage gap between the Nash solution
and the other approaches closes with increasing in-
stance sizes while absolute gaps continue to grow.
This effect is less pronounced in the full competition
case because pooling effects do not improve as much
as in the partial competition case. This is mainly driv-
en by better routing decisions because of larger pool-
ing effects in the Nash solution. For Coop-PDOP and
M-PDOP, we observe that full competition results in a
lower improvement than partial competition. This
might seem counterintuitive at first but can be ex-
plained as follows: In the partial competition case, the
benefits of pooling increase as the total number of ve-
hicles is higher. Thus, Coop-PDOP and M-PDOP find
more efficient routes. In some cases, the routes of the
M-PDOP/Coop-PDOP and the Nash equilibrium
even coincide. High margins decrease the relative
gross profit loss from competing because many

Table 3. Average Percentage Profit Increase Toward Baseline (No Rebalancing) Under Various Models and Algorithms if
Operators Have Different Sizes (Operator 1 in Left Block, Operator 2 in Right Block)

Operator 1 Operator 2

Setting IBR-0 IBR-WP PFO QMO QMP IBR-0 IBR-WP PFO QMO QMP

H_H 113 105 103 47.6 81.1 89.5 103 103 48.4 79.9
H_L 130 125 125 84.6 109 49.9 55.3 59.8 13.9 40.5
L_H 65.6 61.3 60.7 15.3 44.3 121 126 130 91.8 117
L_L 80.8 73 71.7 23.6 47.7 60.9 73.9 73.6 25.9 51.1

Table 4. Average, Minimum, and Maximum Percentage Profit Increase Toward Baseline (No Rebalancing) for Different
Experimental Settings for Either Player (Full Substitution in Left Block, Partial Substitution in Right Block)

Full competition Partial competition

Setting NE W-PDOP Coop-PDOP M-PDOP NE W-PDOP Coop-PDOP M-PDOP

Average 75.6 82.7 107 110 114 115 171 199
Minimum 6.89 6.89 11.2 11.2 10.1 10.1 37.7 59.6
Maximum 155 169 204 209 237 240 304 331
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customers are served in the competitive solution, and
profit differences must, thus, be attributed to im-
proved routing (and improved pooling does not con-
tribute as much gross profit as serving additional
customers).

5.4. Impact of an Increasing Number of Players
All previous experiments consider only two opera-
tors. Although this is sufficient to model competition
in some cities, there are markets with more car-
sharing operators.

Following the numerical design outlined in Table 1,
we report average gross profit increases over all play-
ers for IBR-0, QMO, and QMP for an increasing num-
ber of operators (column title in Table 5), different lev-
els of substitution, different densities, and different
margins (all operators have the same density and mar-
gin to ensure comparability across different numbers
of operators).

We observe that effects studied for the two-operator
case get more pronounced as the number of operators
increases, but tendencies remain the same. The gross
profit increase over the baseline under all three mod-
els decreases if the number of operators increases and
competition is either full or locations are shared
among a subset of operators. This is to be expected be-
cause each operator services fewer customers on aver-
age. If the number of operators increases, it becomes
even more critical to consider competition as ignoring

competition results in significant losses (up to 245%
for full competition and five operators) and, assuming
that the competitors service all locations, results in re-
fraining from any rebalancing if the number of opera-
tors increases. When considering the gain relative to
the case in which all competitive locations are ser-
viced by the competitors, the improvement of consid-
ering competition slightly decreases if the number of
operators increases but remains substantial in all
instances.

5.5. Impact of Inhomogeneous Payoffs
If payoffs for players are inhomogeneous, that is, differ
between players and locations, pure strategy Nash equi-
libria do not provably exist. However, in many instan-
ces, equilibria appear nonetheless and can be found us-
ing IBR. For two players, we consider full and partial
substitution, and either player can have high or low lo-
cation density, following the numerical design outlined
in Table 1. We alter the definition of margins because
the case π1

i � k ·π2
i is a special case of homogeneous

payoffs in which pure strategy Nash equilibria prov-
ably exist. Instead, margins for either player are ran-
domly drawn from a high (π ∈ [6, 10]) or low
(π ∈ [2, 6]) interval. With 100 repetitions of 32 instances,
Nash equilibria existed in all cases, which is partially
because of the full graph with Euclidean costs.

The most central results for inhomogeneous payoffs
are depicted in Table 6, and all results for 32 different

Table 5. Average Percentage Profit Increase over All Operators Toward Baseline (No Rebalancing) for an Increasing
Number of Operators

Two operators Three operators Four operators Five operators

Setting Baseline IBR-0 QMO QMP IBR-0 QMO QMP IBR-0 QMO QMP IBR-0 QMO QMP

F_H_H 12 118 −2 61 77 −127 1 57 −171 3 48 −178 2
F_H_L 8 92 −34 34 67 −166 0 43 −212 0 44 −245 0
F_L_H 6 12 −2 2 19 −53 1 19 −81 0 11 −84 0
F_L_L 4 13 −3 5 5 −5 0 4 −1 0 5 −2 0
P1_H_H 12 216 164 203 237 191 221 237 211 231 232 196 221
P1_H_L 8 144 110 135 174 130 161 168 140 158 158 120 150
P1_L_H 6 17 11 12 23 9 19 32 28 30 20 16 13
P1_L_L 4 8 5 4 7 1 5 7 7 5 9 7 6
P2_H_H 12 225 173 213 217 155 205 218 151 208 201 137 195
P2_H_L 8 159 114 147 144 89 137 131 73 121 145 89 135
P2_L_H 6 28 13 19 18 2 12 20 −2 13 21 4 13
P2_L_L 4 10 10 7 5 5 4 6 0 3 4 0 2

Table 6. Average Percentage Profit Increase Toward Baseline (No Rebalancing) Considering Inhomogeneous Payoffs

Setting IBR-0 1 IBR-0 2 QMO 1 QMO 2 QMP 1 QMP 2

Average (full competition) 167 111 −41 −44 88 83
Minimum (full competition) −26 −47 −237 −239 −77 −66
Maximum (full competition) 404 371 236 226 358 365
Average (partial competition) 311 289 311 289 311 289
Minimum (partial competition) 157 122 157 122 157 122
Maximum (partial competition) 434 433 434 433 434 433
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instances are reported in Table B.3. Compared with
the case of homogeneous payoffs, effects become
more pronounced: gross profit increases over the
quasi-monopolistic solutions become larger for full
competition (on average, the improvement over the
baseline is twice as high for the Nash equilibrium
than for QMP) although, under partial competition,
considering competition never improves the solution
(compared with very small improvements in the ho-
mogeneous payoffs case). When ignoring the presence
of competition, the operator with lower contribution
margins often faces gross profit losses. This operator
can circumvent or at least partially counteract these
by considering competition.

5.6. Impact of Stations with Diminishing
Marginal Payoffs

To study the impact of diminishing payoffs in larger
stations, we fix the density at a high value (12) and as-
sign the vehicles to stations with varying size
ω ∈ [1, 2, 3], where 1 is the case without diminishing
payoffs. We consider full and partial substitution and
assume that every station is either competitive or non-
competitive, but there are no stations with some
competitive and some noncompetitive locations. In
absence of any competition, margins are given by

πι 0,qιn
( ) �∑qιn

i�1
π?
ι ·λ i−1( ),

and the average margin over all locations in a station
is eight (high, H) or four (low, L), which results in a
maximum margin of π?

ι � π
ω

∑ω
i�1λ

(i−1), where π is the
average margin. If multiple operators have vehicles at
station ι, gross profits are split fairly depending on the
number of vehicles either operator has at this station.
λ ∈ {0:5, 0:7, 0:9} is the deterioration rate. Instances are
then addressed by substitution (full or partial), margin

(high or low), deterioration rate, and station size. For
example F_H_0:7_3 refers to the instance with full
substitution, high margins, medium deterioration rate
(0.7), and three locations per station. In Table 7, the
number of locations per station is moved to the
column head.

In total, no Nash equilibria was found in two cases
(out of 100 repetitions of 36 different instances). Both
affected instances have three locations per station and
high margins but different levels of substitution and
deterioration rates. With an increasing number of lo-
cations per station, the benefit of considering competi-
tion decreases slightly as the improvement over the
baseline decreases for the Nash equilibrium but
increases for the quasi-monopolistic solutions. The
former can be explained by moving not too many ve-
hicles to the same station to achieve high payoffs per
location, and the latter occurs because operators gain
some payoff from stations even if the other operator is
also having vehicles there. This effect is not very
strong except that QMO does not result in a negative
gross profit increase over the baseline if the number of
locations exceeds one. Interestingly, the gap between
the two operators’ gross profits closes with an increas-
ing number of locations per station (under full compe-
tition, it decreases from a factor of two difference to
approximately 10% difference) under partial competi-
tion and at three locations per station, operator 2 can
even achieve a higher gross profit than operator 1.
This is mostly because of the second operator no lon-
ger omitting high payoff stations and correlates with a
higher number of iterations of the IBR.

5.7. Impact of Other Customer Choice Behaviors
To establish how much gross profit can be gained if
customers do not strictly choose vehicles at random
and with equal probability, we generate instances
with varying competition, margins, and densities for

Table 7. Average Percentage Profit Increase Toward Baseline (No Rebalancing) with Diminishing Returns for an Increasing
Number of Locations per Station

One location per district Two locations per district Three locations per district

Operator 1 Operator 2 Operator 1 Operator 2 Operator 1 Operator 2

Setting Baseline IBR-0 QMO QMP IBR-0 QMO QMP IBR-0 QMO QMP IBR-0 QMO QMP IBR-0 QMO QMP IBR-0 QMO QMP

F_H_0.9 12 161 2 74 102 2 88 134 14 84 115 22 92 113 14 63 103 24 85
F_H_0.7 12 161 5 81 101 3 87 135 31 85 113 31 94 128 48 96 118 56 82
F_H_0.5 12 158 8 86 102 5 78 147 56 110 99 40 85 143 78 105 124 72 98
F_L_0.9 6 36 −11 9 17 −14 9 31 10 10 22 8 12 23 11 10 28 19 13
F_L_0.7 6 39 −9 9 16 −16 9 25 12 10 23 14 10 37 29 12 31 24 12
F_L_0.5 6 33 −19 8 22 −15 11 33 3 11 30 8 13 59 27 18 40 14 15
P_H_0.9 12 249 202 232 237 203 232 192 172 185 195 179 191 141 117 132 168 148 160
P_H_0.7 12 244 201 227 237 204 234 208 187 202 200 184 196 181 157 174 174 155 168
P_H_0.5 12 243 197 227 234 202 230 223 206 215 214 201 214 220 203 215 215 200 209
P_L_0.9 6 36 27 27 29 25 24 33 29 29 29 27 27 25 24 22 33 32 28
P_L_0.7 6 35 22 25 36 28 30 33 30 31 32 30 28 38 35 33 38 36 33
P_L_0.5 6 35 26 26 31 24 24 42 39 37 39 37 36 54 44 46 61 52 55
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either operator and address them in an analogy to
Section 5.2. If both operators are available at a competi-
tive location i, a customer chooses operator 1 with prob-
ability α ∈ {0:5, 0:75, 1}, where α � 0:5 is strict
availability-based substitution. Thirty-six different in-
stances are repeated 100 times, and pure strategy Nash
equilibria are found in all cases even though they do
not provably exist. In Table B.4, instances are addressed
by substitution (in the column header), margin (same
for both), density operator 1, density operator 2, and α.
For example, H_L_H_0:75 in the column F refers to the
instance with full substitution, high margins, small op-
erator 1, large operator 2, and customers preferring op-
erator 1 over 2 (selecting it in three out of four cases).

Table 8 gives high-level insights into the trends for
other customer choice behaviors. Unsurprisingly, the
higher the preference for operator 1, the more the gross
profits of the two operators diverge. If customers have
a strict preference for operator 1 (α � 1), IBR-0 and
QMO coincide for operator 1, and operator 2 always
collects at least as high of payoffs in the equilibrium as
in any of the quasi-monopolistic solutions (operator 2
might be able to collect additional revenue at locations
that “do not fit” into operator 1’s tour). For operator 1
(the “preferred” operator), the benefit of considering
competition, thus, decreases if α increases, and for oper-
ator 2, the benefit of considering competition increases.

5.8. Case Study for Munich Car-Sharing
To quantify profit gains and losses, we consider a
Munich, Germany, case study. We use publicly available
data from two Munich car-sharing providers containing
start and end locations and times for car-sharing trips
collected in August 2019. Because the data set does not
contain any data about the customers, we assume that
all customers have both memberships and have no pref-
erence for one operator over the other. Having both
memberships is realistic for frequent users and, thus,
most trips. The car-sharing operators have large fleets of
≈ 500 and ≈ 700 vehicles, respectively. We aggregate

trips by assigning them to a start and end district. Dis-
tricts are hexagons with a radius of ≈ 500 m, which is
commonly assumed to be a reasonable walking distance
and provides sufficient flexibility to operators (Ströhle,
Flath, and Gärttner 2019). Districts are approximated by
stations at the center of the district. We focus on 21 sta-
tions with the highest demand during the observation
period (16 days, Monday–Thursday, during August
2019). The average demand of operator 1 is 185 trips,
and the average demand of operator 2 is 153 trips. First,
we count the number of trips starting and ending in ev-
ery station. The differences between arrivals and depar-
tures (“demand imbalance”) can be described by a cu-
mulative arrival probability P(î ≥ k), that is, the
probability that the kth vehicle moved to station ι is
used. The probability P(î ≥ k) is derived from the avail-
able data. During rebalancing, external influences on de-
mand and supply are sufficiently little, and all remaining
differences in demand can be attributed to randomness.
Probability P(î ≥ k) is independent of n because all cus-
tomers are shared and have no preference for one opera-
tor over the other. We define a (joint) payoff function

πn
ι qι1,q

ι
2

( ) � qιn
qι1 + qι2

∑qι1+qι2
k�1

P î ≥ k( ) ·π,

where π is the contribution margin associated with
serving additional customers as a result of rebalancing
a vehicle. We set π � 15 to account not only for direct
revenues of the first customer, but also all future users
of that car until it must be rebalanced again as well as
the benefit of preventing customer dissatisfaction (be-
cause of a low level of service). We chose this value
because the data suggests that vehicles are rebalanced
after approximately 10 trips, customers pay approxi-
mately 0.35e per minute (minus direct costs), and trips
often take at least 15 minutes.

The rebalancing costs are calculated by the travel
time between the stations (given a velocity of 20 km/
h) and five minutes for additional tasks (e.g., loading/
unloading the foldable bike, searching for a parking
spot) at an hourly wage of 10e/h and vehicle cost of
0.3e/km. Thus, the minimum rebalancing cost is
≈ 3:4e (moving back and forth between two stations).
We use this minimum rebalancing cost as a bound on
the maximum number of vehicles that can be profit-
ably moved to a location. Then, there are 28 delivery
locations in nine stations (with one to five locations
per station). Of the 26 pickup locations distributed
across 10 stations, 13 belong to operator 1 and 13 be-
long to operator 2. The remaining two stations inher-
ently have balanced demand.

Table 9 reports the gross profits in euros of either
operator when using IBR, QMO, QMP, and M-PDOP
to find routes.

Table 8. Average Percentage Profit Increase Toward
Baseline (No Rebalancing) Considering Different Customer
Choice

Operator 1 Operator 2

Setting IBR-0 QMO QMP IBR-0 QMO QMP

Average (α � 0:5) 102 58 33 85 57 36
Minimum (α � 0:5) 6 −52 0 5 −53 0
Maximum (α � 0:5) 254 254 121 260 260 136
Average (α � 0:75) 117 89 105 71 27 1
Minimum (α � 0:75) 5 2 0 3 −174 0
Maximum (α � 0:75) 262 262 252 255 255 3
Average (α � 1) 119 119 119 70 −3 0
Minimum (α � 1) 6 6 6 1 −302 0
Maximum (α � 1) 258 258 258 257 257 0
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Because M-PDOP and Coop-PDOP coincide if all
delivery locations are competitive, we do not report
this additionally. The gross profit gains resulting from
considering competition range between 31% and 40%
(35%, on average, over both operators) compared
with assuming that the competitor does not move any
vehicles to locations with demand for additional ve-
hicles. The high gains stem from the fact that both op-
erators move their vehicles to the same locations, leav-
ing a demand imbalance of eight vehicles even
though almost all demand could be served (in equilib-
rium, no vehicle is moved to three potential custom-
ers). However, operators can also reach high profits
by assuming their competitor serves all locations of all
stations. On average, the operators improve their
profits by 12% by considering competition compared
with assuming that their competitor is omnipresent.
Because of the large fleet and the large stations/dis-
tricts, the benefit of merging or outsourcing the reba-
lancing operations is small (≈10%). In conclusion, the
price of ignoring competition is very high at 35%, and
the price of ignoring the rationality of the competitor
is lower at 12% (most likely, operators currently as-
sume some strategy between these two extrema, and
the gain from considering competition is most likely
closer to 12% than to 35%). The price of competition is
not too high with 10%.

5.9. Algorithmic Performance Results
With respect to performance of the algorithms, we
now focus on the following aspects: How large are the
instances for car-sharing relocation that we can solve,
in reasonable time, under the various business

models; in particular, can IBR and PFO solve the
C-PDOP on real life-sized instances? How large are
the differences in gross profits between Nash equilib-
ria found by the different algorithms?

5.9.1. Size of Solvable Instances. All rebalancing
problems under consideration are NP-hard problems
(Theorem 1). However, we can solve medium-sized
instances with up to 50 vehicles that shall be reba-
lanced. Weikl and Bogenberger (2015) record 36 relo-
cations in Munich during one night for one operator.
Munich’s one-way, free-floating car-sharing fleet is
among the largest in the world; thus, the size of solv-
able instances is most likely sufficient in other cities as
well. Further, operators are now reducing the number
of necessary relocations by offering incentives for
user-based relocation (e.g., Ströhle, Flath, and
Gärttner 2019) and by increasing the fleet size (e.g.,
George and Xia 2011).

In Figure 4, we show the average runtimes of 10 in-
stances of increasing size on a logarithmic scale for
full and partial substitution (the latter with different
substitution rates). The instances are solved with the
IBR-0 and the PFO.

As the relocation problem in car-sharing is an oper-
ational problem repeated every night, it should not
run for more than 30 minutes in the average case (or
10 minutes per iteration in the IBR because IBR solves
most instances in three to four iterations). This is pos-
sible for instances with up to 50 locations with both al-
gorithms if there is only a little substitution. For the
IBR, it is still computationally feasible to solve instan-
ces with 50 pickup and delivery locations per operator
under realistic substitution (25%), but in these instan-
ces, we already observe the computational advantage
of the IBR-0 over PFO. Under full substitution, both
algorithms perform substantially worse, but the IBR-0
can solve instances that are roughly twice as large.
Thus, with respect to runtime, the iterated best re-
sponse is the method of choice with both algorithms

Figure 4. (Color online) Runtime (in Seconds) on a Logarithmic Scale for Full Substitution, Partial Substitution (25%), and Partial
Substitution (10%)

Table 9. Results for the Munich Case Study (Absolute
Profits in the Left Block, Relative Gaps in the Right Block)

IBR QMO QMP M-PDOP IBR
QMO

IBR
QMP

IBR
M−PDOP

Operator 1 35.61 25.39 31.43 1.40 1.13
Operator 2 35.28 26.96 31.59 1.31 1.12
Operators 1 and 2 70.89 52.35 63.02 79.18 1.35 1.12 0.90
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performing roughly the same for low substitution
(10%).

Both algorithms only find exact equilibria reliably on
comparably small instances. Leveraging Theorem 4, we
know that provable optimality of the PDOP is not nec-
essary to reach a “sufficiently stable” solution. Thus,
Figure 5 reports the fraction of instances of given size
that solve (i) to optimality, (ii) to 1% optimality, or (iii)
to 5% optimality using IBR-0 and PFO within a time
limit of 10 minutes per iteration (IBR-0) or 30 minutes
in total (PFO).

Similar to the results from Figure 4, we observe that
IBR-0 and PFO solve a similar percentage of small and
medium-sized instances. Surprisingly, PFO solves
80% of the instances with 100 customers and vehicles
and partial competition to 1% optimality although
IBR-0 fails to solve almost any instances with 100 cus-
tomers and vehicles to 1% optimality (even though
the average runtime to optimality is higher for PFO
than for IBR). A similar effect can be observed for full
competition. The reason for this is that, with IBR, ter-
minating with a high optimality gap in any iteration
results in a weak approximation guarantee. This is
also observable from Figure 6, which reports the

average gap for PFO and the average over the worst
gap of all iterations using IBR-0, which gets as high as
9.7% for full substitution and 60 locations (only if at
least 50% of all instances provide a feasible solution).
Also, a deeper look into the branch-and-bound behav-
ior for partial competition reveals that already the first
found integer solution often provides a reasonably
good bound. Thus, if any feasible solution is found, it
frequently already provides a reasonably tight ap-
proximation guarantee.

5.9.2. Trade-off Because of Equilibrium Selection. Both
of the algorithms we presented for the C-PDOP come
at a price: Neither of the algorithms provably returns
the best Nash equilibrium. In Figure 7, we denote the
actual gaps between different Nash equilibria.

If the number of Nash equilibria increases (derived
using full enumeration), we empirically observe the
following ordering for the welfare (sum over all gross
profits): the average Nash equilibrium (derived using
FE) results in lower gross profits than IBR-0, which, in
turn, has lower gross profits than PFO. The profit of
PFO is exceeded by IBR-WP, which has a lower gross
profit than the best Nash equilibrium (derived using

Figure 5. (Color online) Fraction of Instances Solved to Provable/1%/5% Optimality for Full Substitution and Partial Substitu-
tion (25%) Using IBR-0 and PFO

Figure 6. (Color online) Average Optimality Gap for Full and Partial Substitution (25%) Using IBR-0 and PFO (if Incumbent Is
Found for at Least 50% of Instances)
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FE). This ordering is inverse to the ordering by run-
time. Further, we can see that player 1 (the operator
who moves first) profits more from IBR-0 than player
2 (which makes it the second-best and worst algo-
rithm, respectively). Thus, there is a trade-off between
solution quality and runtime. If the number of ex-
pected Nash equilibria is low, if computation time is a
scarce resource, or if any stable solution rather than
the best solution is sufficient, IBR-0 is the preferred
method, and PFO and IBR-WP (or even FE) are pre-
ferred if margins are low and solution quality is
paramount.

6. Conclusion
In this paper, we study the profitability of relocation
operations under competition in a station-based car-
sharing system. We present a mathematical model for
the relocation problem that arises in car-sharing,
which we PDOP. We further present variations of the
PDOP that capture different business models under
competition: The C-PDOP models direct competition,
and the M-PDOP and Coop-PDOP model merger/
monopoly and coopetition/outsourcing relocation op-
erations, respectively. In the C-PDOP, we introduce a
competitor who also optimizes the fleet and then
solve the problem for Nash equilibria, that is, stable
states of the system. The C-PDOP assumes that each
operator plans the tour before executing any reloca-
tions. In a future line of research, one could investigate
a dynamic setting or multistage game in which opera-
tors can change their decision during relocation as they
observe the competitors’ moves. We present two algo-
rithms to find pure strategy Nash equilibria, namely
IBR and PFO, both of which are considerably faster
than out-of-the-box and brute-force algorithms. Pure
strategy Nash equilibria provably exist if both operators
receive the same revenue from servicing a customer
(player homogeneous payoffs), stations hold at most
one vehicle or customer and demand processes are in-
dependent (unit demand stations), and if customers
choose a vehicle at random if multiple operators have a

vehicle available (indifferent customer choice). Even if
these assumptions do not hold, we find that equilibria
do exist and are reached by IBR in most settings.

Though there are examples in which considering
competition is worse than ignoring the presence of
competition for some operators, we show numerically
that profitability for all operators increases in realistic
settings. If margins are low, this improvement (or,
vice versa, the cost of ignorance) can be up to several or-
ders of magnitude. The main drivers for a high cost of
ignorance or benefit of considering competition are
fierce competition, a high number of operators, inho-
mogeneous payoffs, not too large stations, and cus-
tomer preferences for one operator. In a case study,
the gross profit improvement resulting from consider-
ing competition is 35% over assuming that no compe-
tition exists and 12% over assuming that competition
is omnipresent. The more candidate locations there
are, the more important relocation becomes as routes
become more efficient. The more of these locations are
shared, the more important it becomes to consider
competition. We observe that operators might be
worse off by ignoring the presence of competition in
their routing decision than not relocating any vehicles
and might even lose money, in particular, if competi-
tion is fierce. For each of the three assumptions (player
homogeneous payoffs, unit demand stations, and
indifferent customer choice), we show that lifting the
assumption results in similar tendencies if equilibria
exist. Equilibria exist in many realistic instances.
Though the studied algorithms do not necessarily find
the best equilibrium, we show numerically that they
still yield higher gross profits than solutions that do
not consider competition. Hence, operators have an
incentive to adopt and implement game-theoretic
strategies in their relocation decisions.
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Figure 7. (Color online) Quality of Nash Equilibria (for Players 1 and 2 and with Respect toWelfare, Respectively)
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Appendix A. Proofs

A.1. Proof of Theorem 1 (NP-Hardness)
We prove hardness even for the restricted C-PDOP model,
which implies hardness for the general model as well. To
prove point 1, we reduce from the TSP, which is well
known to be NP-hard (Karp 1972). The NP-hardness of
the TSP on bipartite instances follows from Krishnamoor-
thy (1975), whereas the NP-hardness of the prize-
collecting TSP (on general graphs) follows from Feillet,
Dejax, and Gendreau (2005). Because our setting combines
both modifications, we provide for completeness an
NP-hardness proof, adapting the reduction techniques in
those papers as well as in Volgenant and Jonker (1987).

Given an instance of the TSP comprising a complete
graph Kn with vertices labeled 1, : : : ,n and arc routing costs
ce for e ∈ En, construct a PDOP instance G with 4n+ 2 loca-
tions, one worker, and S0 � S1 � ∅ (all locations are optional)
as follows. For each node i ∈ Kn we include four copies
i0, i1, i2, i3 in G such that i0, i2 ∈ Z− and i1, i3 ∈ Z+ (if the costs
are known to satisfy the triangular inequality, for example,
in the Euclidean TSP, then the TSP remains NP-hard, and a
somewhat simpler reduction can be used in which only two
copies i, i′ of each node are required). We further include
additional depot nodes d and p. Fix a node 1 ∈ Kn; then, arc
〈dj3〉 has cost c〈1j〉 for each j≠ 1; further, arc 〈10p〉 has cost
zero. For each arc 〈ij〉 ∈ A, the corresponding arc 〈i0j3〉 has
cost c〈ij〉. For each node i ∈ Kn, the arcs 〈i0i1〉, 〈i2i1〉, and
〈i2i3〉 have cost zero. Any other arc has cost Cn, where
C �maxe∈Ence. As far as profits go, for each node i ∈ Kn, the
corresponding node i2 has profit Cn. Any other node has
profit zero. Finally, set all travel times to be zero and an ar-
bitrary positive time window T so that we can drop the re-
strictions on the travel time of the worker.

To finish the proof of the reduction, simply observe that
a tour (i1i2: : : ini1) in Kn having cost L with i1 � 1 can be
lifted into a d–p path (d[i2]: : : [in][i1]p) in G, where [i] de-
notes the sequence i3i2i1i0. This path has profit
Cn2 − L ∈ [Cn(n− 1),Cn2]. Moreover, any d–p path not of
this form has profit at most Cn(n− 1). Thus, Kn admits a
tour of cost at most L if and only if G admits a d–p path
of profit at least Cn2 − L.

To prove point 2, we observe that a PDOP instance (for
one player) is a special case of a C-PDOP instance (with
two players) in which the other player routes on a trivial
graph and ZC � ∅. To prove points 3 and 4, we observe
that a PDOP instance is a special case of a C-PDOP in-
stance in which all locations are competitive but the distan-
ces from depot nodes d2,p2 to the rest of the graph are pro-
hibitively large (so that player 2’s best strategy is to play
the empty strategy 〈0, : : : , 0〉 and the Nash equilibria corre-
spond to player 1’s best responses to this strategy). w

A.2. Proof of Lemma 1 (Congestion Game)
Given a restricted C-PDOP instance with c locations (and
n players), we construct a congestion game with at most
c+ n2c resources (and also with n players). The congestion
game is described by the following components: a set of
common resources R; a payoff function pr for each

resource r ∈ R; and a set of valid strategies ξn for each
player, where each strategy in ξn is a subset of R.
Recall that, from the discussion in Section 3.2, we can

specify the payoff function at each location i by a single val-
ue πi that represents the payoff that any player could extract
by being the sole operator at i. For each location i ∈ Z, we
include a resource, also denoted i ∈ R, with payoff function

pi(yi) � πi

yi
,

where yi is the number of players having a vehicle available
at location i. Moreover, for each player n and each (compact)
strategy q of that player in the original C-PDOP instance,
our congestion game includes a resource, which is denoted
(q,n) ∈ R, with a constant, negative payoff function

p q,n( ) � −Cn q( );
these can be, in theory, obtained by solving the PDOP in-
stance described in Equations (1a)–(1k) while setting fixed
the variables corresponding to locations.
A valid strategy of player n consists of exactly one re-

source of the second type, (q,n), and all associated loca-
tions i such that qi � 1; that is, the set ξn of valid strategies
is given by

ξn� q,n( ){ }⋃
i : qi�1
{ }

:q is a compact strategy×of player n
{ }

:

In this way, we obtain a valid formulation of a congestion
game as laid out by Rosenthal (1973). The profit of a player
n playing strategy xn � {(qn,n)}⋃{i : qin � 1} is defined as∑

r∈{(qn,n)}
⋃{i:qin�1}pr(yr), where yr is the number of players

accessing resource r. There are, however, two key differ-
ences from the usual formulation: players are maximizing
payoffs instead of minimizing costs, and payoffs may as-
sume positive or negative values. These differences are
without loss of generality because the standard potential
argument can still be applied as we show in the proof of
Corollary 1.
The (compact) strategies q in the standard C-PDOP instance

are in one-to-one correspondence to the valid strategies x in
the congestion game, in which xn � {(qn,n)}⋃{i : qin � 1}. This
correspondence preserves profits; if Pn is the profit function of
player n in the congestion game, then

Pn x( ) � ∑
r∈ qn,n( ){ }⋃ i:qin�1{ }

pr yr
( ) � ∑

i:qin�1

πi

yi
+π qn ,n( )

� ∑
i:qin�1

πi qi( )−Cn qn( ) � Rn q( ) −Cn q( ) �Πn q( ):

Thus, a deviation is improving in the C-PDOP instance if
and only if it is improving in the congestion game. It fol-
lows that q is a Nash equilibrium for the C-PDOP in-
stance if and only if the corresponding strategy x is a
Nash equilibrium for the congestion game. w

A.3. Proof of Corollary 1 (Existence of Pure Strategy
Nash Equilibria)
We apply Rosenthal’s (1973) potential argument. For a
given strategy profile q, let yi � yi(q) denote the number
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of operators placing a vehicle at location i. Define the po-
tential function

Φ s( ) �∑
i∈Z

∑yi
q�1

pi q( ) −
∑
n
Cn qn( )

�∑
i∈Z

Hyiπ
i −∑

n
Cn qn( ),

where Hyi � 1+ 1
2+⋯ + 1

yi denotes the harmonic number of
order yi.

Next observe that the potential function keeps track of
the changes in profit when a player deviates. For example,
suppose player n deviates from strategy qn to q̃n while
the other players keep to strategy q−n, and let ỹi denote
the number of vehicles at location i in the strategy profile
(q̃n,q−n). We prove that the change in potential equals the
change in the profit of player n:

Φ q̃n,q−n
( )−Φ qn,q−n( )

�∑
i∈Z

∑̃yi

q�1
pi q( ) −Cn q̃n

( )− ∑
n′≠n

Cn′ qn′( )

− ∑
i∈Z

∑yi
q�1

pi q( ) −Cn qn( ) −
∑
n′≠n

Cn′ qn′( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
� ∑

i:qin�0, q̃ in�0

∑̃yi

q�1
pi q( ) −

∑yi
q�1

pi q( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠+ ∑
i:qin�1, q̃ in�1

∑̃yi

q�1
pi q( ) −

∑yi
q�1

pi q( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ ∑
i:qin�0, q̃ in�1

∑̃yi

q�1
pi q( ) −

∑yi
q�1

pi q( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠+ ∑
i:qin�1, q̃ in�0

∑̃yi

q�1
pi q( ) −

∑yi
q�1

pi q( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−Cn q̃n

( )+Cn qn( )
� ∑

i:qin�1, q̃ in�1
pi(ỹi) −

∑
i:qin�1, q̃ in�1

pi(yi) +
∑

i:qin�0, q̃ in�1
pi(ỹi)

− ∑
i:qin�1, q̃ in�0

pi(yi) −Cn q̃n
( )+Cn qn( )

� ∑
i:q̃ in�1

pi(ỹi) −Cn q̃n
( )− ∑

i:qin�1
pi(yi) −Cn qn( )

( )

�Πn q̃n,q−n
( )−Πn qn,q−n( ):

In the second equality, we split the sums over i ∈ Z into
four cases, depending on whether each of qin, q̃

i
n is zero or

one. In the third equality, we observe
• If qin � 0, q̃in � 0, then ỹi � yi and

∑ỹ i

q�1pi(q) −
∑yi

q�1
pi(q) � 0.

• If qin � 1, q̃in � 1, then ỹi � yi and
∑ỹ i

q�1pi(q) −
∑yi

q�1pi(q) �
0 � pi(ỹi) − pi(yi).

• If qin � 0, q̃in � 1, then ỹi � yi + 1 and
∑ỹ i

q�1pi(q) −
∑yi

q�1
pi(q) � pi(ỹi).

• If qin � 1, q̃in � 0, then ỹi � yi − 1 and
∑ỹ i

q�1pi(q) −
∑yi

q�1
pi(q) � −pi(yi).

We conclude that a deviation by any player is improving
if and only if the potential increases. Because there are finite-
ly many strategies, Φ possesses a global maximum. The cor-
responding strategy must be a Nash equilibrium because no
player’s deviation would increase the value of the potential
function and, thus, not increase the player’s profit. More-
over, if q(0) → q(1) → : : : is a sequence in which q(n+1) is ob-
tained from q(n) by an improving deviation from one of the
players, then the potential must strictly increase through the
sequence. Such a sequence must then terminate at a local
maximum, which is a Nash equilibrium. w

A.4. Proof of Corollary 2 (Monotonicity of Profits (vs.
Welfare-Maximizing Solution))
By definition, the welfare-maximizing solution is the solu-
tion to the PDOP with two competing operators in which
the joint profit is maximal. Thus, no other solution, in-
cluding any Nash equilibrium solution, can be better. w

A.5. Proof of Lemma 2 (Price of Anarchy and Price
of Stability)
Consider an instance of the restricted C-PDOP model
with two players. We first derive a useful relation be-
tween the profits of a player when the other player
changes strategy. Let q1 be any strategy for player 1 and
q2,q

′
2 be any two strategies for player 2. By definition of

the profit function, we have

Π1 q1,q2( ) �
∑

i:qi1�1,qi2�0
πi + ∑

i:qi1�1, qi2�1

πi

2
−C1 q1( );

Π1 q1,q
′
2

( ) � ∑
i:qi1�1,q′ i2 �0

πi + ∑
i:qi1�1,q′ i2 �1

πi

2
−C1 q1( );

putting these two equations together, we see that

Π1 q1,q2( ) −Π1 q1,q
′
2

( )
� 1
2

∑
i:qi1�1, q′ i2 �1,qi2�0

πi − 1
2

∑
i:qi1�1,q′ i2 �0,qi2�1

πi: (A.1)

To prove point 1, let (q1,q2) be any Nash equilibrium and
(q′

1,q
′
2) be any strategy. Applying Equation (A.1) and the

definition of Nash equilibrium,

Π1 q′
1,q

′
2

( )�Π1 q′
1,q2

( )+1
2

∑
i:q′ i1 �1,qi2�1,q′ i2 �0

πi −1
2

∑
i:q′ i1 �1,qi2�0,q′ i2 �1

πi

≤Π1 q1,q2( )+1
2

∑
i:q′ i1 �1,qi2�1,q′ i2 �0

πi −1
2

∑
i:q′ i1 �1,qi2�0,q′ i2 �1

πi

:

Similarly, for player 2, we have

Π2 q′
1,q

′
2

( )≤Π2 q1,q2( )+1
2

∑
i:q′ i2 �1,qi1�1,q′ i1 �0

πi−1
2

∑
i:q′ i2 �1,qi1�0,q′ i1 �1

πi;

adding both equations and observing that the two sets {i :
q
′i
1 � 1,qi2 � 1,q

′i
2 � 0} and {i : q′i

2 � 1,qi1 � 1,q
′i
1 � 0} are disjoint

subsets of ZC, as well as that πi ≥ 0, we obtain

Π q′
1,q

′
2

( ) �Π1 q′
1,q

′
2

( )+Π2 q′
1,q

′
2

( ) ≤Π1 q1,q2( )
+Π2 q1,q2( ) + 1

2

∑
i∈ZC

πi �Π q1,q2( ) + 1
2

∑
i∈ZC

πi:

Because (q′
1,q

′
2) was taken to be any strategy, the preced-

ing equation implies that the difference in welfare be-
tween any two Nash equilibria is at most 1

2
∑

i∈ZCπi,
which proves point 2. Now, let (q1,q2) be any Nash
equilibrium and (q∗

1,q
∗
2) be a welfare-maximizing strate-

gy. We get that

Π q1,q2( ) ≤Π q∗
1,q

∗
2

( ) ≤Π q1,q2( ) + 1
2

∑
i∈ZC

πi,

and thus, the difference between any Nash equilibrium and
any welfare-maximizing strategy is at most 1

2
∑

i∈Zπi, prov-
ing point 3.
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To prove that the price of anarchy and the price of sta-
bility can be arbitrarily high, consider the game depicted
in Figure A.1. There is only one competitive location with
payoff π � 1+ ε for both players, for some small positive
ε. Either player incurs a traveling cost of c � 1=2 to relocate a
vehicle to the competitive location and return to the depot.
Thus, each player has only two strategies (one for “move” or
zero for “don’t move”). Looking at the payoff matrix, we see
that the only Nash equilibrium occurs when both players de-
cide to service the location for a welfare of ε, whereas the
maximum possible welfare is 1

2+ ε, occurring when only one
player services the location. Thus, both the price of anarchy
and the price of stability equal 1=2+ε

ε � 1+ 1
2ε, which is arbi-

trarily large as ε can be arbitrarily small. Because the
C-PDOP generalizes the restricted C-PDOP, the result also
carries over to the C-PDOP.

To show that the bounds obtained in points 1–3 are
tight, consider the same game as before, but take ε � 0.
Now, both strategies (q1,q2) � (1,0) or (0,1) are welfare
maximizing as well as Nash equilibria, achieving welfare
1
2 � 1

2
∑

i∈ZCπi. Moreover, (q1,q2) � (1, 1) is still a Nash equi-
librium with welfare exactly equal to zero. Thus, the abso-
lute difference between the welfare-maximizing strategy
and the worst Nash equilibrium as well as between best
and worst Nash equilibria is exactly 1

2
∑

i∈ZCπi. w

A.6. Proof of Corollary 3 (NP-Hardness of M-PDOP and
Coop-PDOP)
A PDOP instance is a special case of a Coop-PDOP (M-
PDOP) instance (derived from two players) in which the
second player routes on a trivial graph and ZC � ∅. Thus,
both problems remain NP-hard. w

A.7. Proof of Lemma 3 (Monotonicity of Profits (vs. Mo-
nopoly or Coopetition Solution))
To prove points 1 and 2, simply observe that the space of
feasible solutions increases as we move from C-PDOP to
Coop-PDOP to M-PDOP. In other words, a feasible strat-
egy (x1, a1,x2,a2) with W1,W2 workers in the C-PDOP
model can be merged into a feasible strategy (x̄, ā) with
W1 +W2 workers in the Coop-PDOP model, and a feasi-
ble strategy (x,a) with WO workers in the Coop-PDOP
model is also a feasible strategy (with the same number
of workers) in the M-PDOP model. Moreover, the pay-
offs associated to competitive locations only increase as
we move from C-PDOP to Coop-PDOP to M-PDOP. To
see this, let ι be a station and qι represent the vehicles of

each operator at station ι. The joint payoff at location ι is
the same for the C-PDOP and Coop-PDOP models and
equals

∑
nπ

ι
n(qι). This, in turn, is less than or equal to

the joint payoff for the M-PDOP model, which is defined
as maxq′ (∑nπ

ι
n(q′) |∑nq

ι
n �

∑
nq

ι′
n ). Therefore, the optimal

profit does not decrease as we move from C-PDOP to
Coop-PDOP to M-PDOP (as long as the number of work-
ers is consistent, i.e., WM ≥WO ≥W1 +W2). w

A.8. Proof of Theorem 2 (Monotonicity of Profits (IBR
vs. QMO))
We begin by deriving the following relation between the
potential and payoff functions, valid for the restricted
C-PDOP with two players:

Φ q1,q2( )�
∑
i∈Z

Hyiπ
i−C1 q1( )−C2 q2( )

� ∑
i:qi1�1,qi2�0

πi+ ∑
i:qi1�0,qi2�1

πi+ ∑
i:qi1�1,qi2�1

3
2
πi−C1 q1( )−C2 q2( )

� ∑
i:qi1�1,qi2�0

πi+ ∑
i:qi1�1,qi2�1

πi

2
−C1 q1( )

( )
+ ∑

i:qi2�1
πi−C2 q2( )

( )
�Π1 q1,q2( )+Π2 〈0,: : : ,0〉,q2

( )
;

(A.2)

similarly, one has Φ(q1,q2) �Π1(q1, 〈0, : : : , 0〉)+ Π2(q1,q2).
Consider a sequence of iterated best responses starting

from the 〈0, : : : , 0〉 strategy and ending at a Nash equilibrium
with player 1 moving first into an optimistic strategy:

〈0, : : : ,0〉,〈0, : : : ,0〉( )→1 qO
1 ,〈0, : : : ,0〉

( )
→2 qO

1 ,q
1( )
2

( )
→⋯→ qN

1 ,q
N
2

( )
:

Because q(1)
2 is a best response to player 1 playing qO

1 , the
following is also a sequence of iterated best responses:

qO
1 ,q

O
2

( )
→2 qO

1 ,q
1( )
2

( )
→⋯→ qN

1 ,q
N
2

( )
:

In particular, this implies that the potential value at the
Nash equilibrium retrieved through IBR is at least the po-
tential value at the optimistic quasi-monopolistic strategy,
that is,

Φ qN
1 ,q

N
2

( )
≥ Φ qO

1 ,q
O
2

( )
:

Note that the optimistic strategy maximizes a player’s
profit with respect to the other player playing the empty
strategy; in particular, we have Π1(qO

1 , 〈0, : : : , 0〉) ≥
Π1(qN

1 , 〈0, : : : , 0〉) and Π2(〈0, : : : , 0〉,qO
2 ) ≥Π2(〈0, : : : , 0〉,qN

2 ).
Using (A.2), we get

Π1 qN
1 ,q

N
2

( )
�Φ qN

1 ,q
N
2

( )
−Π2 〈0, : : : , 0〉,qN

2

( )
≥ Φ qO

1 ,q
O
2

( )
−Π2 〈0, : : : , 0〉,qO

2

( )
�Π1 qO

1 ,q
O
2

( )
:

Using a similar reasoning for player 2, we get that
Π2(qN

1 ,q
N
2 ) ≥Π2(qO

1 ,q
O
2 ). Thus, both players are better off

if they agree on a Nash equilibrium obtained by iterated
best responses from the empty strategy. w

A.9. Proof of Theorem 3 (Termination of the Iterated
Best Response Algorithm)
We first define the inverse ¬q of a strategy q as the strate-
gy in which a vehicle is available at precisely the

Figure A.1. Example of a C-PDOP Instance (Left)

Notes. There is only one delivery location, labeled 1, which is competi-
tive. Each player has a depot (d1 or d2) and one vehicle at a separate
location (i1 or i2) with null payoff. The corresponding payoff matrix
(center) and the special case ε � 0 (right).

Martin et al.: Competititive Pickup and Delivery Orienteering Problem
24 Transportation Science, Articles in Advance, pp. 1–28, © 2021 INFORMS



competitive locations in which q does not have a vehicle
available (formally, for every i ∈ ZC, we have that
¬qi � 1− qi). To prove this theorem, we need the following
key auxiliary result: for any strategies q1 and q2, if q1 is a
best response to q2, then q1 is also a best response to its
inverse ¬q1. To see this, let q′

1 be an arbitrary strategy for
player 1; applying Equation (A.1) twice,

Π1 q′
1,¬q1

( )�Π1 q′
1,q2

( )+1
2

∑
i:q′ i1 �1,qi2�1,¬qi1�0

πi−1
2

∑
i:q′ i1 �1,¬qi1�1,qi2�0

πi

≤Π1 q1,q2( )+1
2

∑
i:q′ i1 �1,qi2�1,qi1�1

πi −1
2

∑
i:q′ i1 �1,qi1�0,qi2�0

πi

�Π1 q1,¬q1( )+1
2

∑
i:qi1�1,qi1�0,qi2�0

πi−1
2

∑
i:qi1�1,qi2�1,qi1�1

πi

+1
2

∑
i:q′ i1 �1,qi2�1,qi1�1

πi−1
2

∑
i:q′ i1 �1,qi1�0,qi2�0

πi

�Π1 q1,¬q1( )−1
2

∑
i:qi1�1,qi2�1,q′ i1 �0

πi−1
2

∑
i:q′ i1 �1,qi1�0,qi2�0

πi≤Π1 q1,¬q1( ):

Next, let us consider a sequence of iterated best responses,

q0
1,q

0
2

( )
→1 q1

1,q
0
2

( )
→2 q1

1,q
1
2

( )
→1 : : : →2 qN

1 ,q
N
2

( )
→1 qN+1

1 ,qN
2

( )
,

starting with player 1 and ending at a Nash equilibrium
after 2N+ 1 iterations. For ease of exposition, we only con-
sider the case in which the sequence ends with a move-
ment of player 1. For a fixed 0 < i ≤N, there are two
possibilities:

• If qi+1
1 � ¬qi

2, then we have reached a Nash equilibrium:
because qi

2 is a best response to qi
1, it must be a best response

to its inverse ¬qi
2 � qi+1

1 ; note that this would imply i �N.
• If qi+1

1 ≠ ¬qi
2, then player 1 never plays ¬qi

2 on subse-
quent iterations: assume otherwise that qj+1

1 � ¬qi
2 for some

j > i. Then, ¬qi
2 would be an (equally) best response to qi

2 for
player 1 so that (¬qi

2,q
i
2)would be aNash equilibrium as before.

In particular, qi
2 would be a best response to qj+1

1 � ¬qi
2 for play-

er 2. Putting all these together, we get a contradiction as

Φ qi+1
1 ,qi

2

( )
�Φ ¬qi

2,q
i
2

( )
≥Φ ¬qi

2,q
j
2

( )
�Φ qj+1

1 ,qj
l

( )
>Φ qi+1

1 ,qi
2

( )
:

By similar principles, we have that, if 0 ≤ i < j ≤N, then
qi
2 ≠ qj

2 (i.e., player 2 will not repeat strategies); if
0 < i < j ≤N, then qi

1 ≠ qj
1 (i.e., player 1 will not repeat

strategies except possibly for q0
1); if 0 < i ≤ j ≤N, then

qj
2 ≠ ¬qi

1; and if 0 < i < j ≤N, then qj
1 ≠ ¬qi

2.
In other words, we conclude that the strategies

q1
1,¬q1

2,q
2
1,¬q2

2, : : : ,q
N
1 ,¬qN

2 must be all different. As there
are only | S | possible strategies, it follows that 2N ≤| S |; in
other words, player 2 can play at most | S | =2 different
strategies, player 1 can play at most | S | =2+ 1 different
strategies, and the total number of iterations is at most
| S | +1 (for a maximum number of | S | +2
recalculations). w

A.10. Proof of Theorem 4 (Iterated Best Response Al-
gorithm for Approximate Nash Equilibria)
We start by presenting a different conversion from C-PDOP
to a congestion game that can handle the description of full
strategies. We construct a congestion game having a

resource for each location and for each arc in the network.
To each arc e ∈ A, we associate a constant negative profit
pe � −ce. Similarly to the proof of Lemma 1, for each location
i ∈ Z, we include a resource with profit function

pi(yi) � πi

yi
,

where yi is the number of players having a vehicle available
at location i.
The valid strategies for each player correspond to feasible

tours that only visit locations/arcs associated with that play-
er, that is, satisfying Constraints (1b)–(1k) from the PDOP
model. In other words, for each valid strategy sn � (an,xn) of
player n, we associate a corresponding strategy in the con-
gestion game consisting of those arcs e ∈ A and locations i ∈
Z for which ane ,x

n
i � 1. As in the proof of Lemma 1, this de-

fines a valid congestion game, albeit in a profit-maximizing
instead of cost-minimizing formulation, and in which re-
sources may assume positive or negative values. The stan-
dard potential argument as in the proof of Corollary 1 can
then be applied to conclude that any sequence of improving
deviations must eventually reach a Nash equilibrium.
Next, we consider the ε-IBR as described in the state-

ment of the theorem. By definition, a player only deviates
if the ε-approximately optimal routing found is a strict
improvement to that player’s profit. Therefore, the ε-IBR
dynamics still yield a sequence of improving deviations
and must terminate after a finite number of iterations. All
is left is to prove the quality guarantee of the final strate-
gy, that is, that s is an ε-Nash equilibrium. Let s′n be the
ε-approximate best response to s−n found by player n. Be-
cause player n opts to not deviate from sn, it follows that

1+ ε( )Πn sn, s−n( ) ≥ 1+ ε( )Πn s′n, s−n
( ) ≥max

s′n
Πn s′n, s−n

( )
;

as this relation holds for every player n, the final strategy is
an ε-Nash equilibrium. w

A.11. Proof of Lemma 4 (Optimality of the Potential
Function Optimizer)
Point 1 follows directly from Lemma 1, as the maxima of
the potential function correspond directly to Nash equilibria
of the congestion game. To prove point 2, let q be a maxi-
mum potential Nash equilibrium in which each location is
visited by at most one player (

∑
nq

i
n ≤ 1 ∀i ∈ Z). Note that

this implies, for each location i, that

Hyiπ
i � yiπi �∑

n
πi s( )qin,

and as such Φ(q) �Π(q). Now, if q̃ is any other solution, we
have

Π q̃( ) �
∑
i∈Z

∑
n
πi q̃( )q̃i

n −
∑
n
Cn q̃n

( )
≤∑

i∈Z
Hỹiπi −∑

n
Cn q̃n

( )
� Φ q̃( ) ≤ Φ q( ) �Π q( ):

We conclude that q is also a welfare-maximizing strategy,
and thus, there cannot be a better Nash equilibrium. w

Appendix B. Tables
In the following, we give detailed results for Sections
5.2–5.7. Table B.1 shows the percentage increase toward a
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Table B.1. Percentage Profit Increase Toward Baseline (Operator 1 in Left Block, Operator 2 in Right Block) Under Various
Models and Algorithms as Well as Different Experimental Settings with Substitution Rates, Margins, and Densities for
Either Operator

Operator 1 Operator 2

Setting Baseline IBR-0 IBR-WP PFO QMO QMP Baseline IBR-0 IBR-WP PFO QMO QMP

F_H_H_H 12 160 139 130 −5.46 77.8 12 86.2 125 123 −13.1 66.8
F_H_H_L 12 225 204 206 85.9 180 8 38.5 59.6 67 −61.7 10.1
F_H_L_H 8 79.5 63.6 64.9 −63.2 19.6 12 191 207 215 103 199
F_H_L_L 8 136 110 106 −42.9 30.5 8 59 98.9 97.6 −44.9 32.4
F_L_H_H 6 24.9 21.4 21.4 −12.5 1.9 6 11.1 17.2 17.2 −14.9 1.26
F_L_H_L 6 28.5 28.6 28.7 21.1 8.05 4 3.66 3.93 4.62 −4.4 1.15
F_L_L_H 4 9.59 8.03 7.82 −6.67 1.04 6 21.1 22.9 24.7 13.8 4.25
F_L_L_L 4 5.51 4.88 4.88 1.57 1.07 4 7.04 8.9 8.9 5.31 2.49
P_H_H_H 12 238 234 234 190 223 12 231 240 239 199 228
P_H_H_L 12 243 243 240 210 231 8 149 149 159 117 143
P_H_L_H 8 167 167 164 128 152 12 246 246 251 226 243
P_H_L_L 8 171 166 165 129 152 8 168 178 178 137 164
P_L_H_H 6 28.4 27.4 27.4 18.3 21.2 6 30 32.3 32.3 23.1 23.4
P_L_H_L 6 24.5 24.5 24.2 21.3 17.7 4 8.28 8.28 8.92 4.49 7.25
P_L_L_H 4 6.74 6.74 6.46 3.45 4.89 6 27 27 27.5 24.6 20.9
P_L_L_L 4 10.8 10.6 10.6 6.44 6.66 4 9.29 9.61 9.61 6.04 5.54

Table B.2. Percentage Profit Increase Toward Baseline (Full Substitution in Left Block, Partial Substitution in Right Block)
for Different Experimental Settings with Substitution Rates, Margins, and Densities for Either Player

Full substitution (F_) Partial substitution (P_)

Setting Baseline NE W-PDOP Coop-PDOP M-PDOP Baseline NE W-PDOP Coop-PDOP M-PDOP

H_H_H_H 24 132 156 184 184 24 237 240 304 331
H_H_H_L 20 151 160 198 204 20 207 209 276 305
H_H_L_H 20 155 169 204 209 20 216 218 287 316
H_H_L_L 16 104 113 143 143 16 172 175 249 277
L_L_H_H 12 19.3 19.4 42.4 42.5 12 29.9 29.9 91.5 121
L_L_H_L 10 19.1 19.3 38.1 44.6 10 18.1 18.2 57.8 88.7
L_L_L_H 10 17.9 17.9 36.7 41.8 10 19.1 19.1 65.9 93.8
L_L_L_L 8 6.89 6.89 11.2 11.2 8 10.1 10.1 37.7 59.6

Table B.3. Percentage Profit Increase Toward Baseline with Inhomogeneous Payoffs (Full Substitution in Left Block, Partial
Substitution in Right Block) for Different Experimental Settings with Substitution Rates, Margins, and Densities for Either
Player

Full substitution Partial substitution

Operator 1 Operator 2 Operator 1 Operator 2

Setting Baseline IBR-0 QMO QMP Baseline IBR-0 QMO QMP Baseline IBR-0 QMO QMP Baseline IBR-0 QMO QMP

H_H_H_H 12 142 −3 100 12 118 −1 98 12 434 434 434 12 430 430 430
H_H_H_L 12 279 143 251 8 82 −62 46 12 424 424 424 8 355 355 355
H_H_L_H 8 98 −85 35 12 260 141 258 8 358 358 358 12 433 433 433
H_H_L_L 8 152 −59 84 8 71 −72 52 8 354 354 354 8 349 349 349
H_L_H_H 12 321 55 274 6 1 −163 −37 12 423 423 423 6 257 257 257
H_L_H_L 12 404 236 358 4 −46 −215 −61 12 425 425 425 4 147 147 147
H_L_L_H 8 212 −21 108 6 113 −23 96 8 362 362 362 6 244 244 244
H_L_L_L 8 316 39 194 4 −47 −239 −66 8 358 358 358 4 122 122 122
L_H_H_H 6 20 −170 −38 12 273 70 279 6 295 295 295 12 416 416 416
L_H_H_L 6 145 −18 92 8 140 −15 96 6 292 292 292 8 336 336 336
L_H_L_H 4 −26 −237 −77 12 371 226 365 4 169 169 169 12 427 427 427
L_H_L_L 4 0 −222 −67 8 211 39 154 4 170 170 170 8 336 336 336
L_L_H_H 6 162 −110 35 6 57 −117 8 6 294 294 294 6 254 254 254
L_L_H_L 6 257 63 169 4 −17 −187 −65 6 277 277 277 4 133 133 133
L_L_L_H 4 62 −166 −54 6 174 48 155 4 182 182 182 6 245 245 245
L_L_L_L 4 130 −105 −49 4 8 −135 −56 4 157 157 157 4 141 141 141
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baseline under different algorithms for either operator for
all combinations of parameters.

Analogously, Table B.2 lists detailed results for the total
profit (sum over both operators) toward the baseline and
shows that the profit decreases in all instances when com-
petition is present.

Table B.3 presents detailed information about attainable
profit increases if the assumption of homogeneous payoffs
does not hold.

Table B.4 outlines profit increases if customers do not
choose vehicles completely at random if both operators
have a vehicle available at this location.
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H_H_L_0.5 12 229 96 113 8 48 −53 19 12 250 250 116 8 179 179 42
H_H_L_0.75 12 251 176 242 8 13 −174 0 12 262 262 252 8 185 185 3
H_H_L_1 12 251 251 251 8 7 −302 0 12 253 253 253 8 194 194 0
H_L_H_0.5 8 93 −52 18 12 173 88 113 8 182 182 33 12 260 260 136
H_L_H_0.75 8 165 67 157 12 111 18 1 8 191 191 171 12 255 255 3
H_L_H_1 8 188 188 188 12 103 −63 0 8 189 189 189 12 249 249 0
H_L_L_0.5 8 149 −43 28 8 48 −49 26 8 186 186 21 8 182 182 33
H_L_L_0.75 8 187 76 169 8 14 −159 0 8 178 178 158 8 182 182 2
H_L_L_1 8 186 186 186 8 7 −271 0 8 182 182 182 8 180 180 0
L_H_H_0.5 6 27 −25 3 6 10 −28 0 6 24 24 1 6 26 26 0
L_H_H_0.75 6 26 2 7 6 6 −51 0 6 24 24 9 6 28 28 0
L_H_H_1 6 24 24 24 6 10 −68 0 6 29 29 29 6 23 23 0
L_H_L_0.5 6 26 10 1 4 5 −15 1 6 33 33 3 4 9 9 1
L_H_L_0.75 6 25 21 10 4 3 −13 0 6 27 27 8 4 4 4 0
L_H_L_1 6 33 33 33 4 1 −28 0 6 34 34 34 4 7 7 0
L_L_H_0.5 4 6 −7 1 6 19 13 2 4 10 10 1 6 30 30 2
L_L_H_0.75 4 10 3 5 6 21 13 0 4 7 7 3 6 26 26 1
L_L_H_1 4 6 6 6 6 19 3 0 4 8 8 8 6 25 25 0
L_L_L_0.5 4 6 0 1 4 6 1 1 4 6 6 0 4 9 9 1
L_L_L_0.75 4 5 2 0 4 5 −1 0 4 10 10 6 4 11 11 0
L_L_L_1 4 6 6 6 4 7 −4 0 4 8 8 8 4 10 10 0
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